[1] Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. an evidence-based approach[J]. Am J Respir Crit Care Med, 2019,200(6):751-759. [2] Lapcharoensap W, Bennett MV, Xu X, et al. Hospitalization costs associated with bronchopulmonary dysplasia in the first year of life[J]. J Perinatol, 2020,40(1):130-137. [3] Maturu P, Wei-Liang Y, Androutsopoulos VP, et al. Quercetin attenuates the hyperoxic lung injury in neonatal mice: implications for bronchopulmonary dysplasia(BPD)[J]. Food Chem Toxicol, 2018,114:23-33. [4] Yen E, Weinberger BI, Laumbach RJ, et al. Exhaled breath condensate nitrite in premature infants with bronchopulmonary dysplasia[J]. J Neonatal Perinatal Med, 2018,11(4):399-407. [5] Kalikstad B, Kultima HG, Andersstuen TK, et al. Gene expression profiles in preterm infants on continuous long term oxygen therapy suggest reduced oxidative stress dependent signaling during hypoxia[J]. Mol Med Rep, 2017,15(4):1513-1526. [6] El-Saie A, Shivanna B. Novel strategies to reduce pulmonary hypertension in infants with bronchopulmonary dysplasia[J]. Front Pediatr, 2020,8:201. [7] Kim BI, Lee HE, Choi CW, et al. Increase in cord blood soluble e-selectin and tracheal aspirate neutrophils at birth and the development of new bronchopulmonary dysplasia[J]. J Perinat Med, 2004,32(3):282-287. [8] Sun Y, Chen C, Zhang X, et al. High neutrophil-to-lymphocyte ratio is an early predictor of bronchopulmonary dysplasia[J]. Front Pediatr, 2019,7:464. [9] Kandasamy J, Roane C, Szalai A, et al. Serum eotaxin-1 is increased in extremely-low-birth-weight infants with bronchopulmonary dysplasia or death[J]. Pediatr Res, 2015,78(5):498-504. [10] 陈瑛,彭晓艳,韩同英,等.早产儿嗜酸性粒细胞增多症与支气管肺发育不良的相关性[J]. 中华新生儿科杂志, 2021,36(1):14-19. [11] 邱纪玲,王晓彤,周灏雯,等.间充质干细胞条件培养液修复多种疾病损伤的潜能[J]. 中国组织工程研究, 2019,23(29):4743-4748. [12] Jaimes Y, Naaldijk Y, Wenk K, et al. Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells[J]. Stem Cells, 2017,35(3):812-823. [13] Porzionato A, Zaramella P, Dedja A, et al. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol,2019,316(1):L6-L19. [14] Willis GR, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation[J]. Am J Respir Crit Care Med, 2018,197(1):104-116. [15] LaGrandeur RG, Singhal M, Bany-Mohammed F, et al. Pilot feasibility study to detect mesenchymal stem cell biomarkers of bronchopulmonary dysplasia in the tracheal aspirate fluid of preterm infants[J]. J Neonatal Perinatal Med, 2018,11(1):1-10. [16] Möbius MA, Thébaud B. Bronchopulmonary dysplasia: where have all the stem cells gone? Origin and (potential) function of resident lung stem cells[J]. Chest, 2017,152(5):1043-1052. [17] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. Journal of Immunology, 1995, 155(3):1151. [18] 肖天津,张乐平,古中东,等.Treg细胞和il-12在肺结核合并老年慢性支气管炎患者外周血中的表达及意义[J]. 分子诊断与治疗杂志, 2016,8(3):188-191. [19] 林晴晴,谭卉晗,吴永芳,等.脐血tgf-β1、treg细胞数量水平对早产儿支气管肺发育不良的预测价值[J]. 分子诊断与治疗杂志, 2020,12(8):1052-1055. [20] Cai H, Wang J, Mo Y, et al. Salidroside suppresses group 2 innate lymphoid cell-mediated allergic airway inflammation by targeting il-33/st2 axis[J]. Int Immunopharmacol, 2020,81:106243. [21] Ding W, Zou GL, Zhang W, et al. Interleukin-33: its emerging role in allergic diseases[J]. Molecules,2018,23(7):1665. [22] de Kleer IM, Kool M, de Bruijn MJ, et al. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung[J]. Immunity, 2016,45(6):1285-1298. [23] Tang X. Interleukin-33 (IL-33) increases hyperoxia-induced bronchopulmonary dysplasia in newborn mice by regulation of inflammatory mediators[J]. Med Sci Monit, 2018,24:6717-6728. [24] 蒋燕,曾雯,胡旭红,等.血清白介素-33表达在支气管肺发育不良中的临床价值研究[J]. 成都医学院学报, 2020, 15 (3):70-73. [25] Fu P, Ebenezer DL, Ha AW, et al. Nuclear lipid mediators: role of nuclear sphingolipids and sphinosine-1-phosphate signaling in epigenetic regulation of inflammation and gene expression[J]. Other, 2018,119(8):6337-6353. [26] Hendricks-Muñoz KD, Xu J, Voynow JA. Tracheal aspirate VEGF and sphingolipid metabolites in the preterm infant with later development of bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2018,53(8):1046-1052. [27] Viswanathan N, Ha AW, Dong Y, et al. Expression profiling of genes regulated by sphingosine kinase1 signaling in a murine model of hyperoxia induced neonatal bronchopulmonary dysplasia[J]. BMC Genomics, 2017,18(1):664. [28] Petrache I, Berdyshev EV. Ceramide signaling and metabolism in pathophysiological states of the lung[J]. Annu Rev Physiol, 2016,78:463-480. [29] Presa N, Gomez-Larrauri A, Rivera IG, et al. Regulation of cell migration and inflammation by ceramide 1-phosphate[J]. Biochim Biophys Acta, 2016,1861(5):402-409. [30] van Mastrigt E, Zweekhorst S, Bol B, et al. Ceramides in tracheal aspirates of preterm infants: marker for bronchopulmonary dysplasia[J]. PLoS One, 2018,13(1):e0185969. [31] König K, Guy KJ, Walsh G, et al. Association of bnp, ntprobnp, and early postnatal pulmonary hypertension in very preterm infants[J]. Pediatr Pulmonol, 2016,51(8):820-824. [32] Montaner A, Pinillos R, Galve Z, et al. Brain natriuretic propeptide as an early marker of bronchopulmonary dysplasia or death in the preterm newborn[J]. Klin Padiatr, 2017,229(4):223-228. [33] Méndez-Abad P, Zafra-Rodríguez P, Lubián-López S, et al. NtproBNP is a useful early biomarker of bronchopulmonary dysplasia in very low birth weight infants[J]. Eur J Pediatr, 2019,178(5):755-761. [34] Naeem B, Ayub A, Aly AM, et al. Urinary nt-proBNP as a potential noninvasive biomarker for screening of pulmonary hypertension in preterm infants: a pilot study[J]. J Perinatol, 2020,40(4):628-632. [35] Vaz M, Hwang SY, Kagiampakis I, et al. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations[J]. Cancer Cell, 2017,32(3):360-376. [36] Agudelo Garcia PA, Hoover ME, Zhang P, et al. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly[J]. Nucleic Acids Res, 2017,45(16):9319-9335. [37] Wang J, Jing Y, Wang X, et al. Changing expression profiles of mrna, lncrna, circrna, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (bpd) in mouse model[J]. J Cell Biochem, 2019,120(6):9369-9380. [38] 李娟,蔡成,龚小慧,等.长链非编码RNA malat1与细胞凋亡诱导因子在早产儿支气管肺发育不良中表达及意义[J]. 临床儿科杂志, 2019,37(8):583-586. [39] Mo W, Li Y, Chang W, et al. The role of lncRNA h19 in MAPK signaling pathway implicated in the progression of bronchopulmonary dysplasia[J]. Cell Transplant, 2020,29:963689720918294.doi:10.1177/0963689720918294 [40] Saliminejad K, Khorshid HRK, Fard SS, et al. An overview of micrornas: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019,234(5):5451-5465. [41] Drury RE, O′Connor D, Pollard AJ. The clinical application of micrornas in infectious disease[J]. Front Immunol, 2017,8:1182. [42] Yang Y, Qiu J, Kan Q, et al. MicroRNA expression profiling studies on bronchopulmonary dysplasia: a systematic review and meta-analysis[J]. Genet Mol Res, 2013,12(4):5195-206. [43] Gong X, Qiu J, Qiu G, et al. Adrenomedullin regulated by mirna-574-3p protects premature infants with bronchopulmonary dysplasia[J].Bioscience Reports, 2020,40(5):BSR20191879.doi:10.1042/BSR20191879. |