[1] Bancalari E, Jain D.Bronchopulmonary dysplasia: 50 years after the original description[J].Neonatology,2019,115(4):384-391. [2] Stoll BJ, Hansen NI, Bell EF, et al.Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J].JAMA,2015,314(10):1039-1051. [3] Parker RA, Lindstrom DP, Cotton RB.Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia[J].Semin Perinatol,1996,20(3):206-209. [4] Leong M.Genetic approaches to bronchopulmonary dysplasia[J].Neoreviews,2019,20(5):e272-e279. [5] Thebaud B, Goss KN, Laughon M, et al.Bronchopulmonary dysplasia[J].Nat Rev Dis Primers, 2019,5(1):78. [6] Pan J, Zhan C, Yuan T, et al.Effects and molecular mechanisms of intrauterine infection/inflammation on lung development[J].Respir Res,2018,19(1):93. [7] Keszler M, Sant'Anna G.Mechanical ventilation and bronchopulmonary dysplasia[J].Clin Perinatol,2015,42(4):781-796. [8] Lapcharoensap W, Gage SC, Kan P, et al.Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort[J].JAMA Pediatr,2015,169(2):e143676. [9] Abman SH, Bancalari E, Jobe A.The evolution of bronchopulmonary dysplasia after 50 years[J].Am J Respir Crit Care Med,2017,195(4):421-424. [10] Morrow LA, Wagner BD, Ingram DA, et al.Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants[J].Am J Respir Crit Care Med, 2017,196(3):364-374. [11] Kelly MS, Benjamin DK, Puopolo KM, et al.Postnatal cytomegalovirus infection and the risk for bronchopulmonary dysplasia[J].JAMA Pediatr,2015,169(12):e153785. [12] Willis GR, Fernandez-Gonzalez A, Anastas J, et al.Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation[J].Am J Respir Crit Care Med,2018,197(1):104-116. [13] Martinez FD.Early-life origins of chronic obstructive pulmonary disease[J].N Engl J Med, 2016,375(9):871-878. [14] Wang J, Yin J, Wang X, et al.Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model[J].J Cell Biochem,2019,120(6):9369-9380. [15] Mao X, Guo Y, Qiu J, et al.Next-generation sequencing to investigate circular RNA profiles in the peripheral blood of preterm neonates with bronchopulmonary dysplasia[J].J Clin Lab Anal,2020:e23260. [16] Lingappan K, Savani RC.The wnt signaling pathway and the development of bronchopulmonary dysplasia[J].Am J Respir Crit Care Med,2020,201(10):1174-1176. [17] Warburton D, Bellusci S.Normal lung development needs self-eating[J].J Clin Invest, 2019,129(7):2658-2659. [18] Yeganeh B, Lee J, Ermini L, et al.Autophagy is required for lung development and morphogenesis[J].J Clin Invest,2019,129(7):2904-2919. [19] Durrani-Kolarik S, Pool CA, Gray A, et al.miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia[J].Am J Physiol Lung Cell Mol Physiol,2017,313(2):339-349. [20] Velten M, Britt RD, Heyob KM, et al.Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice[J].Am J Physiol Regul Integr Comp Physiol, 2012,303(3):279-290. [21] Miyazono KI, Moriwaki S, Ito T, et al.Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors[J].Sci Signal,2018,11(523).doi: 10.1126/scisignal.aao7227. [22] Mathew R.Signaling pathways involved in the development of bronchopulmonary dysplasia and pulmonary hypertension[J].Children (Basel),2020,7(8).doi:10.3390/children7080100. [23] Ruiz-Camp J, Quantius J, Lignelli E, et al.Targeting miR-34a/Pdgfra interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia[J].EMBO Mol Med, 2019,11(3):e9448. [24] Syed M, Das P, Pawar A, et al.Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs[J].Nat Commun,2017,8(1):1173. [25] Fulton CT, Cui TX, Goldsmith AM, et al.Gene expression signatures point to a male sex-specific lung mesenchymal cell pdgf receptor signaling defect in infants developing bronchopulmonary dysplasia[J].Sci Rep,2018,8(1):17070. [26] Miller MF, Cohen ED, Baggs JE, et al.Wnt ligands signal in a cooperative manner to promote foregut organogenesis[J].Proc Natl Acad Sci U S A,2012,109(38):15348-15353. [27] Hadchouel A, Franco-Montoya ML, Guerin S, et al.Overexpression of spock2 in mice leads to altered lung alveolar development and worsens lesions induced by hyperoxia[J].Am J Physiol Lung Cell Mol Physiol,2020,319(1):71-81. [28] Ambalavanan N, Carlo WA.Bronchopulmonary dysplasia: new insights[J].Clin Perinatol,2004,31(3):613-628. [29] Wang J, Dong W.Oxidative stress and bronchopulmonary dysplasia[J].Gene,2018,678:177-183. [30] Wu Q, Chong L, Shao Y, et al.Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway[J].Int Immunopharmacol,2019,73:414-423. [31] Li Z, Choo-Wing R, Sun H, et al.A potential role of the JNK pathway in hyperoxia-induced cell death, myofibroblast transdifferentiation and TGF-beta1-mediated injury in the developing murine lung[J].BMC Cell Biol,2011,12:54. [32] Alapati D, Rong M, Chen S, et al.Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats[J].Am J Respir Cell Mol Biol,2011,45(6):1169-1177. [33] Chen XQ, Wu SH, Luo YY, et al.Lipoxin A4 attenuates bronchopulmonary dysplasia via upregulation of let-7c and downregulation of TGF-beta1 signaling pathway[J].Inflammation, 2017,40(6):2094-2108. [34] Alam MA, Betal SGN, Aghai ZH, et al.Hyperoxia causes miR199a-5p-mediated injury in the developing lung[J].Pediatr Res,2019,86(5):579-588. [35] Yuan HS, Xiong DQ, Huang F, et al.MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10[J].J Cell Biochem,2019,120(10):16876-16887. [36] Stouch AN, McCoy AM, Greer RM, et al.IL-1beta and inflammasome activity link inflammation to abnormal fetal airway development[J].J Immunol,2016,196(8):3411-3420. [37] Liao J, Kapadia VS, Brown LS, et al.The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia[J].Nat Commun,2015,6:8977. [38] Chao CM, Yahya F, Moiseenko A, et al.Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia[J].J Pathol,2017,241(1):91-103. [39] Cho HY, van Houten B, Wang X, et al.Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice[J].Antioxid Redox Signal,2012,17(8):1066-1082. [40] Collins JJP, Tibboel D, de Kleer IM, et al.The future of bronchopulmonary dysplasia: emerging pathophysiological concepts and potential new avenues of treatment[J].Front Med (Lausanne), 2017,4:61. [41] Leroy S, Caumette E, Waddington C, et al.A time-based analysis of inflammation in infants at risk of bronchopulmonary dysplasia[J].J Pediatr,2018,192:60-65. [42] Zemans RL, Briones N, Campbell M, et al.Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling[J].Proc Natl Acad Sci U S A,2011,108(38):15990-15995. [43] Zacharias WJ, Frank DB, Zepp JA, et al.Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor[J].Nature,2018,555(7695):251-255. [44] Sucre JMS, Deutsch GH, Jetter CS, et al.A shared pattern of beta-catenin activation in bronchopulmonary dysplasia and idiopathic pulmonary fibrosis[J].Am J Pathol, 2018,188(4):853-862. [45] Yuan T, Volckaert T, Chanda D, et al.Fgf10 signaling in lung development, homeostasis, disease, and repair after injury[J].Front Genet,2018,9:418. [46] Volckaert T, Yuan T, Yuan J, et al.Hippo signaling promotes lung epithelial lineage commitment by curbing Fgf10 and beta-catenin signaling[J].Development,2019,146(2).doi:10.1242/dev.166454 [47] Narasaraju T, Shukla D, More S, et al.Role of microRNA-150 and glycoprotein nonmetastatic melanoma protein B in angiogenesis during hyperoxia-induced neonatal lung injury[J].Am J Respir Cell Mol Biol,2015,52(2):253-261. [48] Baker CD, Abman SH, Mourani PM.Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia[J].Pediatr Allergy Immunol Pulmonol,2014,27(1):8-16. [49] Nakanishi H, Sugiura T, Streisand JB, et al.TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung[J].American Journal of Physiology-Lung Cellular and Molecular Physiology,2007,293(1):151-161. |