[1] Nogacka A, Salazar N, Suárez M, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates[J]. Microbiome, 2017, 5(1):93. [2] Arboleya S, Sánchez B, Solís G, et al. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota:A functional inference study[J]. Int J Mol Sci, 2016, 17(5):649. [3] Aloisio I, Quagliariello A, De Fanti S, et al. Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16s rdna regions[J]. Appl Microbiol Biotechnol, 2016, 100(12):5537-5546. [4] Li W, Tapiainen T, Brinkac L, et al. Vertical transmission of gut microbiome and antimicrobial resistance genes in infants exposed to antibiotics at birth[J]. J Infect Dis, 2021, 224(7):1236-1246. [5] Coker MO, Laue HE, Hoen AG, et al. Infant feeding alters the longitudinal impact of birth mode on the development of the gut microbiota in the first year of life[J]. Front Microbiol, 2021, 12:642197. [6] Bckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life[J]. Cell Host Microbe, 2015, 17(5):690-703. [7] Nagpal R, Tsuji H, Takahashi T, et al. Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by cesarean section[J]. Frontiers in Microbiology, 2016, 7:1997. [8] Li X, Stokholm J, Brejnrod A, et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition[J]. Cell Host Microbe, 2021;29(6):975-987.e4. [9] Mitchell CM, Mazzoni C, Hogstrom L, et al. Delivery mode affects stability of early infant gut microbiota[J]. Cell Rep Med, 2020, 1(9):100156. [10] Gosalbes MJ, Vallès Y, Jiménez-Hernández N, et al. High frequencies of antibiotic resistance genes in infants' meconium and early fecal samples[J]. J Dev Orig Health Dis, 2016, 7(1):35-44. [11] Liu H, Wang HH. Impact of microbiota transplant on resistome of gut microbiota in gnotobiotic piglets and human subjects[J]. Front Microbiol, 2020, 11:932. [12] Gibson MK, Crofts TS, Dantas G. Antibiotics and the developing infant gut microbiota and resistome[J]. Curr Opin Microbiol, 2015, 27:51-56. [13] Lebeaux RM, Coker MO, Dade EF, et al. The infant gut resistome is associated with e. coli and early-life exposures[J]. BMC Microbiol, 2021, 21(1):201. [14] Raveh-Sadka T, Firek B, Sharon I, et al. Evidence for persistent and shared bacterial strains against a background of largely unique gut colonization in hospitalized premature infants[J]. ISME J, 2016, 10(12):2817-2830. [15] Esaiassen E, Hjerde E, Cavanagh JP, et al. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants[J]. Front Pediatr, 2018, 6:347. [16] Coker M, Hoen A, Dade E, et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota:A prospective cohort study[J]. BJOG, 2020, 127(2):217-227. [17] Montoya-Williams D, Lemas DJ, Spiryda L, et al. The neonatal microbiome and its partial role in mediating the association between birth by cesarean section and adverse pediatric outcomes[J]. Neonatology, 2018, 114(2):103-111. [18] 中华医学会围产医学分会,中华医学会妇产科学分会产科学组. 预防围产期B族链球菌病(中国)专家共识[J]. 中华围产医学杂志,2021,24(8):561-566. Chinese Society of Perinatal Medicine, Chinese Society of Obstetrics and Gynaecology. Chinese experts consensus on prevention of perinatal group b streptococcal disease[J]. Chin J Perinat Med, 2021, 24(08):561-566.(in Chinese) [19] 汤兰兰, 林洁如, 彭春红, 等. MecA基因及非MecA基因在MRSA耐药机制中的研究进展[J]. 贵州医药, 2019, 43(4):536-539. Tang LL, Lin JR,Peng CH, et al. Research progress of MecA gene and non-MecA gene in antibiotic resistance mechanism of MRSA[J]. Guizhou Med J, 2019, 43(4):536-539. (in Chinese) [20] Lubriks D, Zogota R, Sarpe VA, et al. Synthesis and antibacterial activity of propylamycin derivatives functionalized at the 5''- and other positions with a view to overcoming resistance due to aminoglycoside modifying enzymes[J]. ACS Infect Dis. 2021;7(8):2413-2424. [21] Silva SMD, Ramos BA, Lima AVA, et al. First report of the aac(6')-Ib-cr gene in Providencia stuartii isolates in Brazil[J]. Rev Soc Bras Med Trop,2020,54:e20190524. [22] Prnnen K, Karkman A, Hultman J, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements[J]. Nat Commun, 2018, 9(1):3891. [23] Baron R, Taye M, Besseling-van der Vaart I, et al. The relationship of prenatal and infant antibiotic exposure with childhood overweight and obesity:A systematic review[J]. J Dev Orig Health Dis. 2020;11(4):335-349. [24] Livanos AE, Greiner TU, Vangay P, et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice[J]. Nat Microbiol, 2016, 1(11):16140. [25] Tochitani S, Ikeno T, Ito T, et al. Administration of non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with alterations in offspring behavior[J]. PLoS One, 2016, 11(1):e0138293. [26] Vangay P, Ward T, Gerber JS, et al. Antibiotics, pediatric dysbiosis, and disease[J]. Cell Host Microbe, 2015, 17(5):553-564. [27] Fouhy F, Ogilvie LA, Jones BV, et al. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library[J]. PLoS One, 2014, 9(9):e108016. [28] Bi Y, Tu Y, Zhang N, et al. Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs[J]. Gut, 2021. [29] 关于印发抗菌药物临床应用指导原则(2015年版)的通知[J]. 中华人民共和国国家卫生和计划生育委员会公报, 2015,7:29. Notice on Issuance of Guidelines for Clinical Application of Antibiotics (2015 edition)[J]. Bulletin of the National Health and Family Planning Commission, 2015,7:29. (in Chinese) |