[1]Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure[J]. Nat Rev Cardiol, 2011, 8(1): 30-41.
[2]Giamouzis G, Kalogeropoulos A, Georgiopoulou V, et al. Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions[J]. J Card Fail, 2011, 17(1): 54-75.
[3]Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016[J]. CA Cancer J Clin, 2016, 66(4): 271-289.
[4]Wojakowski W, Landmesser U, Bachowski R, et al. Mobilization of stem and progenitor cells in cardiovascular diseases [J]. Leukemia, 2012, 26(1): 23-33.
[5]Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation [J]. Cell Physiol Biochem, 2015, 37(6): 2415-2424.
[6]Gao E, Koch WJ. A novel and efficient model of coronary artery ligation in the mouse [J]. Methods Mol Biol, 2013, 1037: 299-311.
[7]Gao E, Lei YH, Shang X, et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse [J]. Circ Res, 2010, 107(12): 1445-1453.
[8]Lu L, Liu M, Sun R, et al. Myocardial infarction: symptoms and treatments [J]. Cell Biochem Biophys, 2015, 72(3): 865-867.
[9]Pan W, Zhu Y, Meng X, et al. Immunomodulation by exosomes in myocardial infarction [J]. J Cardiovasc Transl Res, 2019, 12(1): 28-36.
[10]霍然, 傅小媚, 邓赛, 等. 脂多糖刺激下骨髓间充质干细胞分泌的外泌体对Ly6C单核巨噬细胞亚群的影响[J]. 中国药理学通报, 2018, 34(7): 910-917.
[11]Iso Y, Yamaya S, Sato T, et al. Distinct mobilization of circulating CD271+ mesenchymal progenitors from hematopoietic progenitors during aging and after myocardial infarction[J]. Stem Cells Transl Med, 2012, 1(6): 462-468.
[12]Yao Y, Zhang F, Wang L, et al. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction[J]. J Biomed Sci, 2009, 16: 74.
[13]刘宏博, 周军利, 王小闯, 等. 脂多糖预处理增强髓间充质干细胞移植在心肌梗死大鼠模型中的疗效[J]. 中华老年心脑血管病杂志, 2014, 16(10): 1073-1077.
[14]张蘋, 郭莹, 高亚杰, 等. 低氧预处理人脐带间充质干细胞促进其源性外泌体对心肌梗死后心肌损伤的修复[J]. 中国组织工程研究, 2019, 23(17): 2630-2636.
[15]Xue C, Shen Y, Li X, et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway [J]. Stem Cells Dev, 2018, 27(7): 456-465.
[16]Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2): 654-668.
[17]Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8): 1659-1670.
[18]Jong AY, Wu CH, Li J, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells [J]. J Extracell Vesicles, 2017, 6(1): 1294368.
[19]Sardar Sinha M, Ansell-Schultz A, Civitelli L, et al. Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers[J]. Acta Neuropathol, 2018, 136(1): 41-56.
[20]Xu L, Yang BF, Ai J. MicroRNA transport: a new way in cell communication [J]. J Cell Physiol, 2013, 228(8): 1713-1719. |