[1]Meenakshi S, Jiang XY, Brandwein JM, et al. Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options[J]. Drug Discov Today, 2019, 24(7): 1355-1369.
[2]Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management[J]. Am J Hematol, 2014, 89(5): 547-556.
[3]Mendizabal AM, Younes N, Levine PH. Geographic and income variations in age at diagnosis and incidence of chronic myeloid leukemia[J].Int J Hematol, 2016, 103(1):70-78.
[4]Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options[J]. Semin Cancer Biol, 2018, 51:180-197.
[5]Shimada A . Hematological malignancies and molecular targeting therapy[J]. Eur J Pharmacol, 2019, 862:172641.
[6]Yaghmaie M, Yeung CC. Molecular mechanisms of resistance to tyrosine kinase inhibitors[J]. Curr Hematol Malig Rep, 2019,14(5):395-404.
[7]Kimura S. Molecular biology and treatment of CML[J]. Rinsho Ketsueki, 2017, 58(10):1920-1930.
[8]Shinde SR, Maddika S. Post translational modifications of Rab GTPases[J]. Small GTPases, 2018, 9(1-2):49-56.
[9]Prashar A, Schnettger L, Bernard EM, et al. RabGTPases in immunity and inflammation[J]. Front Cell Infect Microbiol, 2017, 7:435-446.
[10]Solano-Collado V, Rofe A, Spano S. Rab32 restriction of intracellular bacterial pathogens[J]. Small GTPases, 2018, 9(3): 216-223.
[11]Gao Y, Wilson GR, Stephenson SEM, et al. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease[J]. Mov Disord, 2018, 33(2):196-207.
[12]Ortiz-Sandoval CG, Hughes SC, Dacks JB, et al. Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins[J]. Cell Logist, 2014, 4(4): e986399.
[13]Rybnicek J, Samtleben S, Herrera-Cruz MS, et al. Expression of a T39N mutant Rab32 protein arrests mitochondria movement within neurites of differentiated SH-SY5Y cells[J]. Small GTPases, 2018, 7:1-4.
[14]Haile Y, Deng X, Ortiz-Sandoval C, et al. Rab32 connects ER stress to mitochondrial defects in multiple sclerosis[J]. J Neuroinflammation, 2017, 14 (1): 19-22.
[15]Radich JP, Deininger M, Abboud CN, et al. Chronic myeloid leukemia, version 12019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2018, 16(9):1108-1135.
[16]Fukuda M. Multiple Roles of VARP in endosomal trafficking: Rabs, retromer components and R-SNARE VAMP7 meet on VARP[J]. Traffic, 2016, 17(7):709-719.
[17]Li Z, Schulze RJ, Weller SG, et al. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets[J]. Sci Adv, 2016, 2(12): e1601470.
[18]Li C, Luo X, Zhao S, et al. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association[J]. EMBO J, 2017, 36(4): 441-457.
[19]Scatena R. Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation[J]. Adv Exp Med Biol, 2012, 942: 287-308.
[20]Ryl T, Kuchen EE, Bell E, et al. Cell-cycle position of single MYC-driven cancer cells dictates their susceptibility to a chemotherapeutic drug[J].Cell Syst,2017,5(3):237-250.
[21]Men LJ, Liu JZ, Chen HY, et al. Down regulation of G protein-coupled receptor 137 expression inhibits proliferation and promotes apoptosis in leukemia cells[J].Cancer Cell Int,2018,18:13.
[22]Wells JM, Gaggar A, Blalock JE. MMP generated matrikines[J]. Matrix Biol, 2015, 44-46:122-129.
[23]Tan C, Qiao F, Wei P, et al. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis[J]. Mol Carcinog, 2016, 55(4): 397-408.
[24]Alaseem A, Alhazzani K, Dondapati P, et al. Matrix Metalloproteinases: A challenging paradigm of cancer management[J]. Semin Cancer Biol, 2019, 56:100-115. |