[1] Roglic G. 糖尿病的流行情况[J]. 国外医学内分泌学分册, 2002;22: 347. [2] Harrigan RA, NathanMS, Beattie P. Oral agents for the treatment of type 2 diabetes mellitus: pharmacology, toxicity, and treatment[J]. Ann Emerg Med, 2001;38: 68-78. [3] 周宏灏, 主编. 遗传药理学[M]. 北京: 科学出版社, 2001. [4] Melander A. Related clinical pharmacology of sulfonylureas[J]. Metabolism, 1987;36: 12-16. [5] Campbell RK. Related glimepiride: role of a new sulfonylurea in the treatment of type 2 diabetes mellitus[J]. Ann Pharmacother, 1998;32: 1044-1052. [6] 卢爱华, 舒焱, 周宏灏. 细胞色素氧化酶CYP2C9 的研究进展[J]. 中国临床药理学杂志, 2001;16: 381-385. [7] Xie HG, Prasad HC, Kim RB, et al. CYP2C9 allelic variants: ethnic distribution and functional significance[J]. Adv Drug Deliv Rev, 2002;18: 1257-1270. [8] Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism[J]. Pharmacogenetics, 1996;6: 341-349. [9] Bhasker CR, Miners JO, Coulter S, et al. Allelic and functional variability of cytochrome P4502C9[J]. Pharmacogenetics, 1997;7: 51-58. [10] Inoue K, Yamazaki H, Imiya K, et al. Relationship between CYP2C9 and 2C19 genotypes and tolbutamide methyl hydroxylation and S-mephenytoin 4'-hydroxylation activities in livers of Japanese and Caucasian populations[J]. Pharmacogenetics, 1997;7: 103-113. [11] Niemi M, Cascorbi I, Timm R, et al. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes[J]. Clin Pharmacol Ther, 2002;72: 326-332. [12] Yin OQ, Tomlinson B, Chow MS. CYP2C9, but not CYP2C19, polymorphisms affect the pharmacokinetics and pharmacodynamics of glyburide in Chinese subjects[J]. Clin Pharmacol Ther, 2005;78: 370-377. [13] Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers[J]. Pharmacogenetics, 2002;12: 101-109. [14] Shon JH, Yoon YR, Kim KA, et al. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans[J]. Pharmacogenetics, 2002;12: 111-119. [15] Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes[J]. Diabetes, 1996;45: 1661-1669. [16] Wagstaff AJ, Goa KL. Rosiglitazone: a review of its use in the management of type 2 diabetes mellitus[J]. Drugs, 2002;62: 1805-1837. [17] Baldwin SJ, Clarke SE, Chenery RJ. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone[J]. Br J Clin Pharmacol, 1999;48: 424-432. [18] Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid[J]. Pharmacogenetics, 2001;11: 597-607. [19] Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid[J]. Pharmacogenetics, 2001;11: 597-607. [20] Soyama A, Saito Y, Hanioka N, et al. Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism[J]. Biol Pharm Bull, 2001;24: 1427-1430. [21] Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily[J]. Br J Clin Pharmacol, 2001;52: 349-355. [22] Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice[J]. Pharmacol Rev, 2006;58: 521-590. [23] Kang ES, Park SY, Kim HJ, et al. Effects of Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma2 gene on rosiglitazone response in type 2 diabetes[J]. Clin Pharmacol Ther, 2005;78: 202-208. [24] Yamazaki H, Shibata A, Suzuki M, et al. Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P450 2C8 and P450 3A4 in human liver microsomes[J]. Drug Metab Dispos, 1999;27: 1260-1266. [25] 王军生, 许振华, 周宏灏. 细胞色素P450 3A4 与药物氧化代谢[J]. 中国临床药理学杂志, 1996;12: 231-235. [26] Masubuchi Y. Metabolic and non-metabolic factors determining troglitazone hepatotoxicity: a review[J]. Drug Metab Pharmacokinet, 2006;21: 347-356. [27] Niemi M, Backman JT, Neuvonen M, et al. Rifampin decreases the plasma concentrations and effects of repaglinide[J]. Clin Pharmacol Ther, 2000;68: 495-500. [28] NiemiM, Backman JT, Kajosaari LI, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics[J]. Clin Pharmacol Ther, 2005;77: 468-478. [29] Mikkaichi T, Suzuki T, Tanemoto M, et al. The organic anion transporter (OATP)family[J]. Drug Metab Pharmacokinet, 2004;19: 171-179. [30] Nishizato Y, Ieiri I, Suzuki H, et al. Polymorphisms of OATPC (SLC21A6)and OAT3 (SLC22A8)genes: consequences for pravastatin pharmacokinetics[J]. Clin Pharmacol Ther, 2003;73: 554-565. [31] NiemiM, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1)[J]. Pharmacogenetics, 2004;14: 429-440. [32] Kirchheiner J, Meineke I, Muller G, et al. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers[J]. J Clin Pharmacokinet, 2004;43: 267-278. [33] Zhang W, He YJ, Han CT, et al. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide[J]. Br J Clin Pharmacol, 2006;62: 567-572. [34] Wang DS, Jonker JW, Kato Y, et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin[J]. J Pharmacol Exp Ther, 2002;302: 510-515. [35] Wang DS, Kusuhara H, Kato Y, et al. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin[J]. Mol Pharmacol, 2003;63: 844-848. |