[1] Lewis DF.57 varieties:the human cytochromes P450[J]. Pharmacogenomics, 2004, 5(3):305-318. [2] Rendic S.Summary of information on human CYP enzymes: human P450 metabolism data [J].Drug Metab Rev, 2002, 34(1/2):83-448. [3] Hesse LM, He P, Krishnaswamy S, et al.Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes[J].Pharmacogenetics, 2004, 14(4):225-238. [4] Lang T, Klein K, Fischer J, et al.Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver[J].Pharmacogenetics, 2001, 11(5):399-415. [5] Lamba V, Lamba J, Yasuda K, et al.Hepatic CYP2B6 expression:gender and ethnic differences and relationship to CYP2B6 genotype and CAR(constitutive androstane receptor) expression[J].J Pharmacol Exp Ther, 2003, 307(3):906-922. [6] Guan S, Huang M, Li X, et al.Intra-and inter-ethnic differences in the allele frequencies of cytochrome P450 2B6 gene in Chinese[J].Pharm Res, 2006, 23(9):1983-1990. [7] Hiratsuka M, Takekuma Y, Endo N, et al.Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population[J].Eur J Clin Pharmacol, 2002, 58(6): 417-421. [8] Mehlotra RK, ZiatsMN, Bockarie MJ, et al.Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea[J].Eur J Clin Pharmacol, 2006, 62(4):267-275. [9] Lang T, Klein K, Richter T, et al.Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles[J].J Pharmacol Exp Ther, 2004, 311(1):34-43. [10] Wang J, Sonnerborg A, Rane A, et al.Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz[J].Pharmacogenet Genomics, 2006, 16(3):191-198. [11] Klein K, Lang T, Saussele T, et al.Genetic variability of CYP2B6 in populations of African and Asian origin:allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz[J].Pharmacogenet Genomics, 2005, 15(12):861-873. [12] Mehlotra RK, Bockarie MJ, Zimmerman PA.CYP2B6 983T >C polymorphism is prevalent inWest Africa but absent in Papua New Guinea:implications for HIV AIDS treatment[J].Br J Clin Pharmacol, 2007, 64(3):391-395. [13] Hiratsuka M, Hinai Y, Konno Y, et al.Three novel single nucleotide polymorphisms (SNPs)of the CYP2B6 gene in Japanese individuals[J].Drug Metab Pharmacokinet, 2004, 19(2):155-158. [14] Gatanaga H, Hayashida T, Tsuchiya K, et al.Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6*6 and*26[J].Clin Infect Dis, 2007, 45(9):1230-1237. [15] Rotger M, Tegude H, Colombo S, et al.Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals[J].Clin Pharmacol Ther, 2007, 81(4):557-566. [16] Zukunft J, Lang T, Richter T, et al.A natural CYP2B6 TATA box polymorphism (-82T--> C) leading to enhanced transcription and relocation of the transcriptional start site[J].Mol Pharmacol, 2005, 67(5):1772-1782. [17] Nakajima M, Komagata S, Fujiki Y, et al.Genetic polymorphisms of CYP2B6 affect the pharmacokinetics pharmacodynamics of cyclophosphamide in Japanese cancer patients[J].Pharmacogenet Genomics, 2007, 17(6):431-445. [18] Csajka C, Marzolini C, Fattinger K, et al.Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection[J].Clin Pharma-col Ther, 2003, 73(1):20-30. [19] Marzolini C TA, Decosterd LA, Greub G, et al.Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients[J]. AIDS, 2001, 15(1):71-75. [20] Ward BA GJ, Jones DR, Hall SD, et al.The cytochrome P450 2B6 (CYP2B6)is the main cataly st of efavirenz primary and secondary metabolism:implication for HIV AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity [J].J Pharmacol Exp Ther, 2003, 306(1):287-300. [21] Rotger M, Colombo S, Furrer H, et al.Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIVinfected patients[J].Pharmacogenet Genomics, 2005, 15(1):1-5. [22] Saitoh A, Fletcher CV, Brundage R, et al.Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism[J].J Acquir Immune Defic Syndr, 2007, 45(3):280-285. [23] Nyakutira C, Roshammar D, Chigutsa E, et al.High prevalence of the CYP2B6 516G-->T(*6)variant and effect on the population pharmacokinetics of efavirenz in HIV AIDS outpatients in Zimbabwe [J].Eur J Clin Pharmacol, 2008, 64(4):357-365. [24] Stephanie R, Edward L, Stacy S, et al.Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity[J].Drug Metab Dispos, 2000, 28(10):1222-1230. [25] Kirchheiner J, Klein C, Meineke I, et al.Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6[J].Pharmacogenetics, 2003, 13(10):619-626. [26] Yamazaki H, Inoue K, Hashimoto M, et al.Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes[J].Arch Toxicol, 1999, 73(2):65-70. [27] Johnstone E, Benowitz N, Cargill A, et al.Determinants of the rate of nicotine metabolism and effects on smoking behavior[J].Clin Pharmacol Ther, 2006, 80(4):319-330. [28] Lee AM, Jepson C, Shields PG, et al.CYP2B6 genotype does not alter nicotine metabolism, plasma levels, or abstinence with nicotine replacement therapy [J].Cancer Epidemiol Biomarkers Prev, 2007, 16(6):1312-1314. [29] Ring HZ, Valdes AM, Nishita DM, et al.Gene-gene interactions between CYP2B6 and CYP2A6 in nicotine metabolism[J].Pharmacogenet Genomics, 2007, 17(12): 1007-1015. [30] Lee AM, Jepson C, Hoffmann E, et al.CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial[J].Biol Psychiatry, 2007, 62(6):635-641. [31] Roy P, Tretyakov O, Wright J, et al.Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6.Favorable metabolic properties of R-enantiomer [J].Drug Metab Dispos, 1999, 27(11):1309-1318. [32] Huang Z, Roy P, Waxman DJ.Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide[J].Biochem Pharmacol, 2000, 59(8):961-972. [33] De Jonge ME HA, Rodenhuis S, Beijnen JH.Clinical pharmacokinetics of cyclophosphamide[J].Clin Pharmacokinet, 2005, 44(11):1135-1164. [34] Xie H, Griskevicius L, Stahle L, et al.Pharmacogenetics of cyclophosphamide in patients with hematological malignancies[J].Eur J Pharm Sci, 2006, 27(1):54-61. [35] Takada K, Arefayene M, Desta Z, et al.Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cy clophosphamide in lupus nephritis [J].Arthritis Rheum, 2004, 50(7):2202-2210. [36] Crettol S, Deglon JJ, Besson J, et al.Methadone enantiomer plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment[J].Clin Pharmacol Ther, 2005, 78(6):593-604. [37] Kharasch ED, Hoffer C, Whittington D, et al.Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone [J].Clin Pharmacol Ther, 2004, 76(3):250-269. [38] Eap CB, Crettol S, Rougier JS, et al.Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers[J].Clin Pharmacol Ther, 2007, 81(5):719-728. |