[1] Browning KS, Gallie DR, Hershey JW, et al. Unified nomenclature for the subunits of eukaryotic initiation factors 3[J]. Trends Biochem Sci, 2001, 26(5):284. [2] Mamiko M, Nahum S, Shigeyuki Y, et al. Reconstitution reveals the functional core of mammalian eIF3[J]. EMBO J, 2007, 26(14):3373-3383. [3] Hershey JWB, Merrick WC. Pathway and mechanism of initiation of protein synthesis. In: Soneneberg N, Hershey JWB, Mathews MB, editors. Translational control of gene expression[C]. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2000: 33-88. [4] Zhou C, Alrslan F, Wee S, et al. PCI proteins eIF3e and eIF3m define distinct translation initiation factors 3 complexes[J]. BMC Biol, 2005, 3(1):14. [5] Alan G. Hinnebusch. eIF3: a versatile scaffold for translation initiation complexes[J]. Bio Sci, 2006, 31(10):553-562. [6] Dong Z, Zhang JT. Initiation factor eIF3 and regulation of mRNA translation, cell growth and cancer[J]. Oncology, 2006, 59(3):169-180. [7] Valasek L, Phan L, Anderson J, et al. Complex formation by all five homologues of mammalian translation initiation factors 3 subunits from yeast Saccharomyces cerevisiae[J]. J Biol Chem, 2002, 21(21):5886-5898. [8] Valasek L, Mathew AA, Shin BS, et al. The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo[J]. Gene Dev, 2003, 17(6):786-799. [9] Barbara K, Surinder K, Efstratios K, et al. Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase and ribosomal protein S6K-mediate signal[J]. Mol Cell Biol, 2009, 29(3):2865-2875. [10] Pestova TV, Kolupaeva VG. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection[J]. Genes Dev, 2002, 16(22):2906-2922. [11] Chaudhuri J, Chakrabarti A, Maitra U. Biochemical characterization of mammalian translation initiation factor 3[J]. J Biol Chem, 1997, 272(49):30975-30983. [12] Dong ZZ, Liu LH, Han BG, et al. Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth[J]. Oncogene, 2004, 23(21):3790-3801. [13] Dong ZZ, Zhang JT. EIF3 p170, a mediator of mimosine effect on protein synthesis and cell cycle progression[J]. Mol Biol Cell,2003, 14(9):3942-3951. [14] Pincheira R, Chen Q, Huang Z, et al. Two subcelluar localizations of eIF3 P170 and its interaction with membrane-bound micro-filaments: implication for alternative function of P170[J]. Eur J Cell Biol, 2001, 80(6):410-418. [15] Chudinova EM, Ivanov PA, Nadezhdina ES. Large subunit of translation initiation factor-3P170 contains potentially functional nuclear localization signals[J]. Mol Biol (Mosk), 2004, 38(4):684-691. [16] Asp E, Nilsson D, Sunnerhagen P. Fisson yeast mitogen-activated protein kinase Sty1 interacts with translation initiation factors[J]. Eukaryotic Cell, 2008, 7(2):328-338. [17] Miguel RP, Serrano P, Saiz M, et al. Foot-and-mouth disease virus infection induce proteolytic cleavage of PTB, eIF3a,b, and PABP RNA-binding proteins[J]. Virology, 2007, 364(2):466-474. [18] Nakai Y, Shiratsuchi A, Manaka J, et al. Externalization and recognition by macrophage of large subunit of eukaryotic translation initiation factor 3 in apoptosis cells[J]. Exp Cell Res, 2005, 309(1):137-148. [19] Kovarik P, Hasek J, Valasek L, et al. RPG1: an essential gene of Saccharomyces cerevisae encoding a 110000 protein required for passage through the G1 phase[J]. Curr Genet, 1998, 33(2):100-109. [20] Dong ZZ, Liu ZQ, Ping C, et al. Role of eIF3a in regulating cell cycle progression[J]. Exp Cell Res, 2009, 315(11):1889-1894. [21] Liu Z, Dong Z, Yang Z, et al. Role of eIF3a (eIF3 p170) intestinal cell differentiation and its association with early development[J]. Differentiation, 2007, 75(7):652-661. [22] Yingdee U, Yi H, Ergin B, et al. MILI, a pirna binding protein, is required for germline stem cell self-renewal and appears to positively regulate translation[J]. J Biol Chem, 2008, 284(10):6507-6519. [23] Benedetti D, Graff JR. eIF4E expression and its role in malignancies and metastases[J]. Oncogene, 2004, 23(18):3189-199. [24] Fukuchi ST, Ishii I, Kashiwagi K, et al. Malignant transformation by overproduction of translation initiation factor eIF4G[J]. Cancer, 1997, 57(22):5041-5044. [25] Zhang LL, Pan XY, Hershey JWB. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells[J]. J Biol Chem, 2007, 282(8):5790-5800. [26] Bachmann F, Banziger R, Burger MM. Cloning of a novel protein over-expressed in human mammary carcinoma[J]. Cancer Res, 1997, 57(5):988-994. [27] 韩丽芳,刘昭前.eIF3亚家族与恶性肿瘤发生的关系[J]. 中国临床临床药理学与治疗, 2008,13(10):1195-1200. [28] Chen G, Burger MM. p150 expression and its prognostic value in squamous-cell carcinoma of esophagus[J]. Int J Cancer, 1999, 84(2):95-100. [29] Chen G, Burger MM. p150 overexpression in gastric carcinoma: the association with p53, apoptosis and cell proliferation[J]. Int J Cancer, 2004, 112(3):393-398. [30] Pincheria R, Chen Q, Zhang JT, et al. Identification of a 170-KDa protein over-expressed in lung cancer[J]. Br J Cancer, 2001, 84(11):1520-1527. [31] 沈杰,李慧华,张建亭,等. eIF3S10在肺癌组织中的表达及与化疗反应的关系[J]. 国际病理科学与临床杂志, 2006, 26(5):369-371. [32] Olson JE, Wang X, Goode EL, et al. Variation in genes required for normal mitosis and risk of breast cancer[J]. Breast Cancer Res Treat, 2009, 19(2): 423-430. |