[1] de Lencastre H, Oliveira D, Tomasz A. Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power[J]. Curr Opin Microbiol,2007,10(5):428-435. [2] 李乃静, 李岩, 潘作东, 等. 生物被膜肺炎克雷伯杆菌AmpC酶、超广谱β-内酰胺酶的检测[J]. 中国临床药理学与治疗学, 2008, 13(4): 384-387. [3] Ball PR, Chopra I, Eccles SJ. Accumulation of tetracyclines by Escherichia coli K-12[J]. Biochem Biophys Res Commun,1977,77(4):1500-1507. [4] Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria[J]. Drugs,2004,64(2):159-204. [5] Law CJ, Maloney PC, Wang DN. Ins and outs of major facilitator superfamily antiporters[J]. Annu Rev Microbiol,2008,62:289-305. [6] Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family[J]. Biochim Biophys Acta,2009,1794(5):763-768. [7] Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow[J]. Biochim Biophys Acta,2008,1778(9):1814-1838. [8] Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update[J]. Drugs,2009,69(12):1555-1623. [9] Seeger MA, Diederichs K, Eicher T, et al. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance[J]. Curr Drug Targets,2008,9(9):729-749. [10] Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli[J]. J Bacteriol,2001,183(20):5803-5812. [11] Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli[J]. J Bacteriol,2001,183(19):5639-5644. [12] Sugimura M, Maseda H, Hanaki H, et al. Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother,2008,52(11):4141-4144. [13] Chen S, Cui S, McDermott PF, et al. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials[J]. Antimicrob Agents Chemother,2007,51(2):535-542. [14] Akiba M, Lin J, Barton YW, et al. Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni[J]. J Antimicrob Chemother,2006,57(1):52-60. [15] Truong-Bolduc QC, Hooper DC. The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and beta-lactams in Staphylococcus aureus[J]. J Bacteriol,2007,189(8):2996-3005. [16] Narui K, Noguchi N, Wakasugi K, et al. Cloning and characterization of a novel chromosomal drug efflux gene in Staphylococcus aureus[J]. Biol Pharm Bull,2002,25(12):1533-1536. [17] Garvey MI, Piddock LJ. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB[J]. Antimicrob Agents Chemother,2008,52(5):1677-1685. [18] Mata MT, Baquero F, Perez-Diaz JC. A multidrug efflux transporter in Listeria monocytogenes[J]. FEMS Microbiol Lett,2000,187(2):185-188. [19] Ramos JL, Martinez-Bueno M, Molina-Henares AJ, et al. The TetR family of transcriptional repressors[J]. Microbiol Mol Biol Rev,2005,69(2):326-356. [20] Andresen C, Jalal S, Aili D, et al. Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance[J]. Protein Sci,2010,19(4):680-692. [21] Chen H, Hu J, Chen PR, et al. The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism[J]. Proc Natl Acad Sci U S A,2008,105(36):13586-13591. [22] Daigle DM, Cao L, Fraud S, et al. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa[J]. J Bacteriol,2007,189(15):5441-5451. [23] Morita Y, Cao L, Gould VC, et al. nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa[J]. J Bacteriol,2006,188(24):8649-8654. [24] Morero NR, Monti MR, Argarana CE. Effect of ciprofloxacin concentration on the frequency and nature of resistant mutants selected from Pseudomonas aeruginosa mutS and mutT hypermutators[J]. Antimicrob Agents Chemother,2011,55(8):3668-3676. [25] Fetar H, Gilmour C, Klinoski R, et al. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol[J]. Antimicrob Agents Chemother,2011,55(2):508-514. [26] Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction[J]. Annu Rev Biochem,2000,69:183-215. [27] Eguchi Y, Oshima T, Mori H, et al. Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli[J]. Microbiology,2003,149(Pt 10):2819-2828. [28] Nishino K, Honda T, Yamaguchi A. Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system[J]. J Bacteriol,2005,187(5):1763-1772. [29] Tavio MM, Aquili VD, Poveda JB, et al. Quorum-sensing regulator sdiA and marA overexpression is involved in in vitro-selected multidrug resistance of Escherichia coli[J]. J Antimicrob Chemother,2010,65(6):1178-1186. [30] De la Cruz MA, Calva E. The complexities of porin genetic regulation[J]. J Mol Microbiol Biotechnol,2010,18(1):24-36. [31] Lee JH, Lee KL, Yeo WS, et al. SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli[J]. J Bacteriol,2009,191(13):4441-4450. [32] Feuerriegel S, Heisig P. Role of global regulator Rma for multidrug efflux-mediated fluoroquinolone resistance in Salmonella[J]. Microb Drug Resist,2008,14(4):259-263. [33] Truong-Bolduc QC, Ding Y, Hooper DC. Posttranslational modification influences the effects of MgrA on norA expression in Staphylococcus aureus[J]. J Bacteriol,2008,190(22):7375-7381. [34] Jonsson IM, Lindholm C, Luong TT, et al. mgrA regulates staphylococcal virulence important for induction and progression of septic arthritis and sepsis[J]. Microbes Infect,2008,10(12/13):1229-1235. [35] Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use[J]. Biochem Pharmacol,2006,71(7):910-918. [36] Zechini B, Versace I. Inhibitors of multidrug resistant efflux systems in bacteria[J]. Recent Pat Antiinfect Drug Discov,2009,4(1):37-50. [37] Askoura M, Mottawea W, Abujamel T, et al. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa[J]. Libyan J Med,2011,6. [38] Leitner I, Nemeth J, Feurstein T, et al. The third-generation P-glycoprotein inhibitor tariquidar may overcome bacterial multidrug resistance by increasing intracellular drug concentration[J]. J Antimicrob Chemother,2011,66(4):834-839. [39] Mirza ZM, Kumar A, Kalia NP, et al. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus[J]. J Med Microbiol,2011,60(Pt 10):1472-1478. [40] Kern WV, Steinke P, Schumacher A, et al. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli[J]. J Antimicrob Chemother,2006,57(2):339-343. [41] Liu J, Keelan P, Bennett PM, et al. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli[J]. J Antimicrob Chemother,2009,63(3):423-426. [42] Lin HT, Bavro VN, Barrera NP, et al. MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA[J]. J Biol Chem,2009,284(2):1145-1154. [43] Li XZ, Poole K, Nikaido H. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes[J]. Antimicrob Agents Chemother,2003,47(1):27-33. [44] Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium[J]. Mol Microbiol,2006,59(1):126-141. [45] Bialek-Davenet S, Marcon E, Leflon-Guibout V, et al. In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother,2011,55(6):2795-2802. [46] Xu XJ, Su XZ, Morita Y, et al. Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd[J]. Microbiol Immunol,2003,47(12):937-943. [47] Wang Y, Wu CM, Lu LM, et al. Macrolide-lincosamide-resistant phenotypes and genotypes of Staphylococcus aureus isolated from bovine clinical mastitis[J]. Vet Microbiol,2008,130(1/2):118-125. [48] Davis DR, McAlpine JB, Pazoles CJ, et al. Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery[J]. J Mol Microbiol Biotechnol,2001,3(2):179-184. [49] Choudhuri BS, Bhakta S, Barik R, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis[J]. Biochem J,2002,367(Pt 1):279-285. [50] Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2008,52(7):2503-2511. [51] Singh M, Jadaun GP, Ramdas, et al. Effect of efflux pump inhibitors on drug susceptibility of ofloxacin resistant Mycobacterium tuberculosis isolates[J]. Indian J Med Res,2011,133(5):535-540. [52] DeMarco CE, Cushing LA, Frempong-Manso E, et al. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus[J]. Antimicrob Agents Chemother,2007,51(9):3235-3239. [53] Hannula M, Hanninen ML. Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli[J]. J Med Microbiol,2008,57(Pt 7):851-855. [54] Stavri M, Piddock LJ, Gibbons S. Bacterial efflux pump inhibitors from natural sources[J]. J Antimicrob Chemother,2007,59(6):1247-1260. [55] Sharma S, Kumar M, Nargotra A, et al. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis[J]. J Antimicrob Chemother,2010,65(8):1694-1701. |