[1] Glubb DM,Innocenti F. Mechanisms of genetic regulation in gene expression: examples from drug metabolizing enzymes and transporters[J]. Wiley Interdiscip Rev Syst Biol Med, 2011, 3(3): 299-313. [2] Kim GH, Ryan JJ, Marsboom G, et al. Epigenetic mechanisms of pulmonary hypertension[J]. Pulm Circ,2011, 1(3): 347-356. [3] Ivanov M, Kacevska M, Ingelman-Sundberg M. Epigenomics and interindividual differences in drug response[J]. Clin Pharmacol Ther, 2012, 92(6): 727-736. [4] Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease[J]. Circulation,2011,123(19): 2145-2156. [5] 刘海燕, 袁洪, 黄志军, 等. DNA甲基化与药物效应的表观遗传药理学研究进展[J]. 中国临床药理学, 2012, 28(2): 62-65. [6] 杜霞, 袁洪, 邢晓为. DNA甲基化与原发性高血压的研究进展[J]. 生物化学与生物物理进展,2010,37 (4): 364-369. [7] Evison BJ,Bilardi RA,Chiu FC, et al. CpG methylation potentiates pixantrone and doxorubicin-induced DNA damage and is a marker of drug sensitivity[J]. Nucleic Acids Res, 2009,37(19):6355-6370. [8] Gomez A, Ingelman-Sundberg M. Pharmacoepigenetics: its role in interindividual differences in drug response[J]. Clin Pharmacol Ther,2009,85(4): 426-430. [9] Kim KA, Park PW, Lee OJ, et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of amlodipine in healthy Korean subjects[J]. Clin Pharmacol Ther,2006,80(6): 646-656. [10] Baker EK, El-Osta A. Epigenetic regulation of multidrug resistance 1 gene expression: profiling CpG methylation status using bisulphite sequencing[J]. Methods Mol Biol,2010, 596: 183-198. [11] Kim KA, Park PW, Park JY. Effect of ABCB1 (MDR1) haplotypes derived from G2677T/C3435T on the pharmacokinetics of amlodipine in healthy subjects[J]. Br J Clin Pharmacol, 2007, 63(1): 53-58. [12] Nakano H, Nakamura Y, Soda H, et al. Methylation status of breast cancer resistance protein detected by methylation-specific polymerase chain reaction analysis is correlated inversely with its expression in drug-resistant lung cancer cells[J]. Cancer, 2008, 112(5): 1122-1130. [13] 郭军, 蔡军, 李自成. 原发性高血压患者ABCG4基因启动子的甲基化差异分析[J].中国病理生理杂志,2011,27(11): 2067-2071. [14] Yuan H, Huang Z, Yang G, et al. Effects of polymorphism of the beta(1) adrenoreceptor and CYP2D6 on the therapeutic effects of metoprolol[J]. J Int Med Res, 2008, 36(6): 1354-1362. [15] Jiang Q, Yuan H, Xing X, et al. Methylation of adrenergic beta1 receptor is a potential epigenetic mechanism controlling antihypertensive response to metoprolol[J]. Indian J Biochem Biophys, 2011,48(5): 301-307. [16] Yuan H, Huang ZJ, Xing XW, et al. Inhibitors of DNA methyltransferase and histone deacetylase regulate the expression of β1-adrenoceptor gene in myocardial cells[J]. Cell Biol Int, 2008, 32(3): S7-S8. [17] Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma[J]. Nature,2011,476(7360): 298-303. [18] Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma[J]. Nature,2011,476(7360): 298-303. [19] Chen B, Li H, Zeng X, et al. Roles of microRNA on cancer cell metabolism[J].J Transl Med, 2012, 10(1): 228. [20] Mateo LI, der Harst PV, de Boer RA. Pharmacoepigenetics in heart failure[J].Curr Heart Fail Rep,2010,7(2): 83-90. [21] Esteller M. Epigenetics in cancer[J].N Engl J Med,2008,358(11): 1148-1159. [22] Mano H. Epigenetic abnormalities in cardiac hypertrophy and heart failure[J]. Environ Health Prev Med, 2008, 13(1): 25-29. [23] Dannenberg LO, Edenberg HJ. Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation[J]. BMC Genomics, 2006, 7: 181. [24] Li Y, Cui Y, Hart SN, et al. Dynamic patterns of histone methylation are associated with ontogenic expression of the Cyp3a genes during mouse liver maturation[J].Mol Pharmacol, 2009, 75(5): 1171-1179. [25] Portela A, Esteller M. Epigenetic modifications and human disease[J].Nat Biotechnol,2010, 28(10): 1057-1068. [26] Pollard SM, Stricker SH, Beck S. A shore sign of reprogramming[J]. Cell Stem Cell, 2009,5(6): 571-572. [27] Schroen B, Heymans S. MicroRNAs and beyond: the heart reveals its treasures[J]. Hypertension,2009, 54(6): 1189-1194. [28] Ronneberg JA, Tost J, Solvang HK, et al. GSTP1 promoter haplotypes affect DNA methylation levels and promoter activity in breast carcinomas[J].Cancer Res,2008, 68(14): 5562-5571. [29] Zhu H, Wu H, Liu X, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells[J].Biochem Pharmacol, 2008, 76(5): 582-588. [30] Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin[J].Mol Cancer Ther,2008, 7(7): 2152-2159. [31] Dorn GW 2nd. MicroRNAs in cardiac disease[J]. Transl Res,2011, 157(4): 226-235. [32] Han M, Toli J, Abdellatif M. MicroRNAs in the cardiovascular system[J].Curr Opin Cardiol,2011,26(3): 181-189. [33] 杨杰, 谭洁, 邹建军, 等. P450酶和转运体的DNA甲基化调控:提示药物反应的个体差异[J].中国临床药理学与治疗学, 2010,15(11): 1294-1299. |