[1] Wang BB, Cheng JY, Gao HH, et al. Hepatic stellate cells in inflammation-fibrosis-carcinoma axis[J]. Anat Rec (Hoboken), 2010, 293(9): 1492-1496. [2] Rahman R, Hammoud GM, Almashhrawi AA, et al. Primary hepatocellular carcinoma and metabolic syndrome: an update[J]. World J Gastrointest Oncol, 2013, 5(9): 186-194. [3] Lim EJ, Torresi J. Prevention of hepatitis C virus infection and liver cancer[J]. Rec Res Cancer Res, 2014, 193: 113-133. [4] Nishikawa H, Osaki Y. Non-B, non-C hepatocellular carcinoma (Review)[J]. Int J Oncol, 2013, 43(5): 1333-1342. [5] Presser LD, Mcrae S, Waris G. Activation of TGF-beta1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-beta1 in hepatic stellate cell activation and invasion[J]. PLoS One, 2013, 8(2): e56367. [6] Gougelet A, Colnot S. microRNA: new diagnostic and therapeutic tools in liver disease[J]? Med Sci (Paris), 2013, 29(10): 861-867. [7] Sun J, Lu H, Wang X, et al. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications[J]. Sci World J, 2013, 13: 924206. [8] Katsuda T, Ochiya T. microRNAs act as a fine-tuner of liver development, regeneration, and carcinogenesis[J]? Seikagaku, 2012, 84(8): 666-674. [9] Gressner OA, Weiskirchen R, Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options[J]. Comp Hepatol, 2007, 6: 7. [10] Asahina K. Hepatic stellate cell progenitor cells[J]. J Gastroenterol Hepatol, 2012, 27(Suppl 2): 80-84. [11] Zhao Q, Qin CY, Zhao ZH, et al. Epigenetic modifications in hepatic stellate cells contribute to liver fibrosis[J]. Tohoku J Exp Med, 2013, 229(1): 35-43. [12] Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques[J]. Expert Rev Gastroenterol Hepatol, 2012, 6(1): 67-80. [13] de Gouville AC, Boullay V, Krysa G, et al. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis[J]. Br J Pharmacol, 2005, 145(2): 166-177. [14] Liu Y, Liu H, Meyer C, et al. Transforming growth factor-beta (TGF-beta)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires stat3 signaling activation[J]. J Biol Chem, 2013, 288(42): 30708-30719. [15] Ding ZY, Jin GN, Liang HF, et al. Transforming growth factor beta induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling[J]. Cell Signal, 2013, 25(10): 1981-1992. [16] Yoshida K, Matsuzaki K. Differential Regulation of TGF-beta/Smad Signaling in Hepatic Stellate Cells between Acute and Chronic Liver Injuries[J]. Front Physiol, 2012, 3: 53. [17] Hamzavi J, Ehnert S, Godoy P, et al. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice[J]. J Cell Mol Med, 2008, 12(5B): 2130-2144. [18] Tahashi Y, Matsuzaki K, Date M, et al. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury[J]. Hepatology, 2002, 35(1): 49-61. [19] Czochra P, Klopcic B, Meyer E, et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice[J]. J Hepatol, 2006, 45(3): 419-428. [20] Borkham-Kamphorst E, Stoll D, Gressner AM, et al. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis[J]. Biochem Biophys Res Commun, 2004, 321(2): 413-423. [21] Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, et al. Pro-fibrogenic potential of PDGF-D in liver fibrosis[J]. J Hepatol, 2007, 46(6): 1064-1074. [22] Higuchi M, Kihara R, Okazaki T, et al. Akt1 promotes focal adhesion disassembly and cell motility through phosphorylation of FAK in growth factor-stimulated cells[J]. J Cell Sci, 2013, 126(Pt3): 745-755. [23] Noetel A, Kwiecinski M, Elfimova N, et al. microRNA are Central Players in Anti- and Profibrotic Gene Regulation during Liver Fibrosis[J]. Front Physiol, 2012, 3: 49. [24] Guo CJ, Pan Q, Xiong H, et al. Dynamic expression of miR-126 and its effects on proliferation and contraction of hepatic stellate cells[J]. FEBS Lett, 2013. [25] Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis[J]. Oncogene, 2007, 26(42): 6133-6140. [26] Kwiecinski M, Elfimova N, Noetel A, et al. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29[J]. Lab Invest, 2012, 92(7): 978-987. [27] Noetel A, Kwiecinski M, Elfimova N, et al. microRNA are Central Players in Anti- and Profibrotic Gene Regulation during Liver Fibrosis[J]. Front Physiol, 2012, 3: 49. [28] Li J, Zhang Y, Kuruba R, et al. Roles of microRNA-29a in the antifibrotic effect of farnesoid X receptor in hepatic stellate cells[J]. Mol Pharmacol, 2011, 80(1): 191-200. [29] Kwiecinski M, Noetel A, Elfimova N, et al. Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction[J]. PLoS One, 2011, 6(9): e24568. [30] Ramdas V, Mcbride M, Denby L, et al. Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29[J]. Am J Pathol, 2013. [31] Lakner AM, Steuerwald NM, Walling TL, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis[J]. Hepatology, 2012, 56(1): 300-310. [32] Maubach G, Lim MC, Chen J, et al. miRNA studies in in vitro and in vivo activated hepatic stellate cells[J]. World J Gastroenterol, 2011, 17(22): 2748-2773. [33] Mann J, Chu DC, Maxwell A, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis[J]. Gastroenterology, 2010, 138(2): 705-714, 711-714. [34] Zheng J, Lin Z, Dong P, et al. Activation of hepatic stellate cells is suppressed by microRNA-150[J]. Int J Mol Med, 2013, 32(1): 17-24. [35] Dong P, Kaneuchi M, Watari H, et al. MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1[J]. Mol Cancer, 2011, 10: 99. [36] Guo CJ, Pan Q, Jiang B, et al. Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells[J]. Apoptosis, 2009, 14(11): 1331-1340. [37] Ng R, Song G, Roll GR, et al. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration[J]. J Clin Invest, 2012, 122(3): 1097-1108. [38] Clarke JD, Sharapova T, Lake AD, et al. Circulating microRNA 122 in the methionine- and choline-deficient mouse model of non-alcoholic steatohepatitis[J]. J Appl Toxicol, 2013. [39] Coulouarn C, Factor VM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties[J]. Oncogene, 2009, 28(40): 3526-3536. [40] Conrad KD, Niepmann M. The role of microRNAs in hepatitis C virus RNA replication[J]. Arch Virol, 2013. [41] Xu H, He JH, Xiao ZD, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development[J]. Hepatology, 2010, 52(4): 1431-1442. [42] Bala S, Szabo G. MicroRNA signature in alcoholic liver disease[J]. Int J Hepatol, 2012, 12: e98232. [43] Guo CJ, Pan Q, Li DG, et al. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis[J]. J Hepatol, 2009, 50(4): 766-778. [44] Cermelli S, Ruggieri A, Marrero JA, et al. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease[J]. PLoS One, 2011, 6(8): e23937. [45] Zhang Y, Cheng X, Lu Z, et al. Upregulation of miR-15b in NAFLD models and in the serum of patients with fatty liver disease[J]. Diabetes Res Clin Pract, 2013, 99(3): 327-334. [46] 马丽霞,韦新焕,张晶. miR-15家族在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2013, 29(2): 158-161. [47] Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma[J]. Hepatology, 2010, 51(3): 836-845. [48] Cermelli S, Ruggieri A, Marrero JA, et al. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease[J]. PLoS One, 2011, 6(8): e23937. [49] Marquez RT, Bandyopadhyay S, Wendlandt EB, et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans[J]. Lab Invest, 2010, 90(12): 1727-1736. [50] Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis[J]. J Exp Med, 2010, 207(8): 1589-1597. [51] Maubach G, Lim MC, Chen J, et al. miRNA studies in in vitro and in vivo activated hepatic stellate cells[J]. World J Gastroenterol, 2011, 17(22): 2748-2773. [52] Rong M, He R, Dang Y, et al. Expression and clinicopathological significance of miR-146a in hepatocellular carcinoma tissues[J]. Ups J Med Sci, 2013. [53] Ji J, Wang XW. New kids on the block: diagnostic and prognostic microRNAs in hepatocellular carcinoma[J]. Cancer Biol Ther, 2009, 8(18): 1686-1693. [54] Miranda RC, Pietrzykowski AZ, Tang Y, et al. MicroRNAs: master regulators of ethanol abuse and toxicity[J]? Alcohol Clin Exp Res, 2010, 34(4): 575-587. [55] 彭小芳,刘海英. 循环miRNA在肝胆疾病诊断中的研究进展[J]. 临床肝胆病杂志, 2014, 30(9): 965-968. |