[1] Evans W, Mcleod HL.Pharmacogenomics-drug disposition, drug targets and side effects[J]. N Engl J Med, 2003, 348(6): 538-549. [2] Dubinsky MC, Lamothe S, Yang HY, et al.Pharmacogenomicsand metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease[J]. Gastroenterology, 2000, 18(4): 705-713. [3] Peregud-Pogorzelski J, Tetera-Rudnicka E, Kurzawski M, et al.Thiopurine S-methyltransferase (TPMT) polymorphisms in children with acute lymphoblastic leukemia, and the need for reduction or cessation of 6-mercaptopurine doses during maintenance therapy: the Polish multicenter analysis[J]. Pediatr Blood Cancer, 2011, 57(4): 578-582. [4] Armstrong L, Sharif JA, Galloway P, et al.Evaluating the use of metabolite measurement in children receiving treatment with a thiopurine[J]. Aliment Pharmacol Ther, 2011, 34(9): 1106-1114. [5] Uribe-Luna S, Quintana-Hau JD, Maldonado-Rodriguez R, et al.Mutagenic consequences of the incorporation of 6-thioguanine into DNA[J]. Biochem Pharmacol, 1997, 54(3):419-424. [6] Hedeland RL, Hvidt K, Nersting J, et al.DNA incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma[J]. Cancer Chemother Pharmacol, 2010, 66(3): 485-491. [7] Bökkerink JP, Stet EH, De Abreu RA, et al.6-mercaptopurine: cytotoxicity and biochemical pharmacology in human malignant T-lymphoblasts[J]. Biochem Pharmacol, 1993, 45(7): 1455-1463. [8] Eklund BI, Moberg M, Bergquist J, et al.Divergent activities of human glutathione transferases in the bioactivation of azathioprine[J]. Mol Pharmacol, 2006, 70(2): 747-754. [9] Stocco G, Martelossi S, Barabino A, et al.Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2007, 13(1): 57-64. [10] Stocco G, Cuzzoni E, De Iudicibus S, et al.Deletion of glutathione-S-transferase M1 reduces azathioprine metabolite concentrations in young patients with inflammatory bowel disease[J]. J Clin Gastroenterol, 2014, 48(1): 43-51. [11] Catapanp CV, Dayton JS, Mitchell BS, et al.GTP depletion induced by IMP dehydrogenase inhibitors blocks RNA-primed DNA synthesis[J]. Mol Pharmacol, 1995, 47(5): 948-955. [12] Haglund S, Taipalensuu J, Peterson C, et al.IMPDH activity in thiopurine-treated patients with inflammatory bowel disease-relation to TPMT activity and metabolite concentrations[J]. Br J Clin Pharmacol, 2008, 65(1): 69-77. [13] Haglund S, Vikingsson S, Soderman J, et al.The role of inosine-5'-monophosphate dehydrogenase in thiopurine metabolism in patients with inflammatory bowel disease[J]. Ther Drug Monit, 2011, 33(2): 200-208. [14] Appell ML, Berg J, Duley J, et al.Nomenclature for alleles of the thiopurine methyltransferase gene[J]. Pharmacogenet Genomics, 2013, 23(4): 242-248. [15] Zhang JP, Zhou SF, Chen X, et al.Determination of intra-ethnic differences in the polymorphisms of thiopurine S-methyltransferase in Chinese[J]. Clin Chim Acta, 2006, 365(1/2): 337-341. [16] 吴笑春,熊晖,熊磊,等. 肾移植受者硫嘌呤甲基转移酶基因多态性与硫唑嘌呤不良反应关系的研究[J]. 中国临床药理学与治疗学,2008, 13(9): 1037-1043. [17] Adam de Beaumais T, Fakhoury M, Medard Y, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy[J]. Br J Clin Pharmacol, 2011, 71(4): 575-584. [18] Stanulla M, Schaeffeler E, Moricke A, et al.Thiopurine methyltransferase genetics is not a major risk factor for secondary malignant neoplasms after treatment of childhood acute lymphoblastic leukemia on Berlin-Frankfurt-Münster protocols[J]. Blood, 2009, 114(7): 1314-1318. [19] Chisick L, Oleschuk C, Bernstein CN.The utility of thiopurine methyltransferase enzyme testing in inflammatory bowel disease[J]. Can J Gastroenterol, 2013, 27(1): 39-43. [20] Wennerstrand P, Martensson LG, Soderhall S, et al.Methotrexate binds to recombinant thiopurine S-methyltransferase and inhibits enzyme activity after high-dose infusions in childhood leukaemia[J]. Eur J Clin Pharmacol, 2013, 69(9): 1541-1649. [21] Chrzanowska M, Kuehn M, Januszkiewicz-Lewandowska D, et al.Thiopurine S-methyltransferase phenotype-genotype correlation in children with acute lymphoblastic leukemia[J]. Acta Pol Pharm, 2012, 69(3): 405-410. [22] Serpe L, Calvo PL, Muntoni E, et al.Thiopurine S-methyltransferase pharmacogenetics in a large- scale healthy Italian-Caucasian population: differences in enzyme activity[J]. Pharmacogenomics, 2009, 10(11): 1753-1765. [23] Huang RS, Ratain MJ.Pharmacogenetics and pharmacogenomics of anticancer agents[J]. CA Cancer J Clin, 2009, 59(1): 42-55. [24] Caprilli R, Gassull MA, Escher JC, et al.European evidence based consensus on the diagnosis and management of Crohn's disease: special situations[J]. Gut, 2006, 55(Suppl 1): i36-58. [25] van den Akker-van Marle ME, Gurwitz D, Detmar SB, et al. Cost-effectiveness of pharmacogenomics in clinical practice: A case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe[J]. Pharmacogenomics, 2006, 7(5): 783-792. [26] Donnan JR, Ungar WJ, Mathews M, et al.A cost effectiveness analysis of thiopurine methyltransferase testing for guiding 6-mercaptopurine dosing in children with acute lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2011, 57(2): 231-239. [27] Ansari A, Aslam Z, De Sica A, et al.Influence of xanthine oxidase on thiopurine metabolism in Crohn's disease[J]. Aliment Pharmacol Ther, 2008, 28(6): 749-757. [28] Hawwa AF, Millership JS, Collier PS, et al.Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine[J]. Br J Clin Pharmacol, 2008, 66(4): 517-28. [29] Schaeffeler E, Fischer C, Brockmeier D, et al.Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants[J]. Pharmacogenetics, 2004, 14(7): 407-417. [30] Panayiotidis MI, Stabler SP, Allen RH, et al.Cigarette smoke extract increases S-adenosylmethionine and cystathionine in human lung epithelial-like (A549) cells[J]. Chem Biol Interact, 2004, 147(87): 87-97. [31] Milek M, Karas Kuzelicki N, Smid A, et al.S-adenosylmethionine regulates thiopurine methyltransferase activity and decreases 6-mercaptopurine cytotoxicity in MOLT lymphoblasts[J]. Biochem Pharmacol, 2009, 77(12): 1845-1853. [32] Arenas M, Simpson G, Lewis CM, et al.Genetic variation in the MTHFR gene influences thiopurine methyltransferase activity[J]. Clin Chen, 2005, 51(12): 2371-2374. [33] Breen DP, Marinaki AM, Arenas M, et al.Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation[J]. Liver Transpl, 2005, 11(7): 826-833. [34] Karas-Kuzelicki N, Jazbec J, Milek M, et al.Heterozygosity at the TPMT gene locus, augmented by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL patients[J]. Leukemia, 2009, 23(5): 971-974. [35] Trinh BN, Ong CN, Coetzee GA, et al.Thymidylate synthase: a novel genetic determinant of plasma homocysteine and folate levels[J]. Hum Genet, 2002, 111(3): 299-302. [36] Kaneda S, Nalbantoglu J, Takeishi K, et al.Structural and functional analysis of the human thymidyltate synthase gene[J]. J Biol Chem, 1990, 265(33): 20277-20284. [37] Marsh S, King CR, Ahluwalia R, et al.Distribution of ITPA P32T alleles in multiple world populations[J]. J Hum Genet, 2004, 49(10): 579-581. [38] Stocco G, Cheok MH, Crews KR, et al.Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia[J]. Clin Pharmacol Ther, 2009, 85(2): 164-172. [39] Ban H, Andoh A, Imaeda H, et al.The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease[J]. J Gastroenterol, 2010, 45(10): 1014-1021. [40] Peng XX, Shi Z, Damaraju VL, et al.Up-regulation of MRP4 and down-regulation of influx transporters in human leukemic cells with acquired resistance to 6-mercaptopurine[J]. Leuk Res, 2008, 32(5): 799-809. |