[1] Burman WJ, Reves RR. Hepatotoxicity from rifampin plus pyrazinamide: lessons for policymakers and messages for care providers [J]. Am J Respir Crit Care Med, 2001, 164(7): 1112-1113. [2] Yee D, Valiquette C, Pelletier M, et al. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis [J]. Am J Respir Crit Care Med, 2003, 167(7): 1472-1477. [3] Lee SW, Chung LS, Huang HH, et al. NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis [J]. Int J Tuberc Lung Dis, 2010, 14(5): 622-626. [4] Bose PD, Sarma MP, Medhi S, et al. Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis [J]. J Gastroenterol Hepatol, 2011, 26(2): 312-318. [5] Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H: quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury [J]. J Hepatol, 2007, 47(1): 128-134. [6] Vavricka SR, Van Montfoort J, Ha HR, et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver [J]. Hepatology, 2002, 36(1): 164-172. [7] Knowles SR, Uetrecht J, Shear NH. Idiosyncratic drug reactions: the reactive metabolite syndromes [J]. Lancet, 2000, 356(9241): 1587-1591. [8] Ellard GA, Gammon PT. Pharmacokinetics of isoniazid metabolism in man [J]. J Pharmacokinet Biopharm, 1976, 4(2): 83-113. [9] Yew WW, Leung CC. Antituberculosis drugs and hepatotoxicity [J]. Respirology, 2006, 11(6): 699-707. [10] Morel G, Cossec B, Lambert AM, et al. Evaluation of rat hepatic 2E1 activity in function of age, sex and inducers: choice of an experimental model capable of testing the hepatotoxicity of low molecular weight compounds [J]. Toxicol Lett, 1999, 106(2): 171-180. [11] 崔金霞, 关巍, 冯喜英. N 乙酰化转移酶 2 基因多态性与异烟肼所致肝损伤研究进展[J]. 中国医疗前沿, 2013, 8(9): 16-18. [12] Roy PD, Majumder M, Roy B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity [J]. Pharmacogenomics, 2008, 9(3): 311-321. [13] 郝金奇, 陈怡, 李世明, 等. 尿苷二磷酸葡糖醛酸转移酶1A6基因多态性与抗结核药物致肝损害的相关性[J]. 中国肝脏病杂志, 2011, 19(3): 201-204. [14] Jamis-Dow CA, Katki AG, Collins JM, et al. Rifampin and rifabutin and their metabolism by human liver esterases [J]. Xenobiotica, 1997, 27(10): 1015-1024. [15] McCarty MF. ''Iatrogenic Gilbert syndrome''-A strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin [J]. Med Hypotheses, 2007, 69(5): 974-994. [16] Oelberg DG, Lester R. Cellular mechanisms of cholestasis [J]. Annu Rev Med, 1986, 37(1): 297-318. [17] Nelson SD, Mitchell JR, Timbrell JA, et al. Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat [J]. Science, 1976, 193(4256): 901-903. [18] Mitchel JR, Jollow DJ, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione [J]. J Pharmacol Exp Ther, 1973, 187(1): 211-217. [19] Tsutsumi M, Takada A, Wang JS. Genetic polymorphism of cytochrome P-450 2E1 related to the development of alcoholic liver disease [J]. Gastroenterology, 1994, 107(5): 1430-1435. [20] Huang YS, Chern HD, Su WJ, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis [J]. Hepatology, 2003, 37(4): 924-930. [21] Vuilleurnier N, Rossier MF, Chiappe A, et al. CYP2El genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis [J]. Eur J Clin Phamacol, 2006, 62(6): 423-429. [22] 王涛, 王巍, 王仲元, 等. 细胞色素P450-2E1基因多态性与抗结核药物性肝损害的相关性[J]. 中华结核和呼吸杂志, 2009, 32(8): 585-587. [23] 吴雪琼, 朱冬林, 张俊仙,等. 羧酸酯酶基因1多态性鉴定及其与抗结核药物肝毒性相关性研究[J]. 中华内科杂志, 2012, 51(7): 524-530. [24] Mitchell JR, Zimmerman HJ, Ishak KG, et al. Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis [J]. Ann Intern Med, 1976, 84(2): 181-192. [25] Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, et al. N-acetyl transferase 2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients [J]. Int J Tuberc Lung Dis, 2013, 17(4): 499-504. [26] Teixeira RL, Morato RG, Cabello PH, et al. Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients [J]. Mem Inst Oswaldo Cruz, 2011, 106(6): 716-724. [27] Mitchell JR, Thorgeirsson UP, Black M, et al. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize metabolites [J]. Clin Pharmacol Ther, 1975, 18(1): 70-79. [28] Du H, Chen X, Fang Y, et al. Slow N-acetyltransferase 2 genotype contributes to antituberculosis drug-induced hepatotoxicity: a meta-analysis [J]. Mol Biol Rep, 2013, 40(5): 3591-3596. [29] 安慧如, 吴雪琼, 王仲元. N-乙酰基转移酶 2 及谷胱甘肽 S 转移酶 M1 基因多态性与抗结核药物性肝损伤的关系研究[J]. 中国防痨杂志, 2014, 36(1): 14-20. [30] Possuelo LG, lCastclan JA, deyBrito TC, et a1. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil[J]. Eur J Clin Pharmacol, 2008, 64(7): 673-681. [31] Higuchi N, Tahara N, Yanagihara K, et al. NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity In Japanese patients with tuberculosis [J]. World J Gastroenterol, 2007, 13(45): 6003-6008. [32] Strang RC, Jones PW, Fryer AA. Glutathione S-transferase: Genetics and role in toxiclogy [J]. 2000, 112-113: 357-363. [33] Leiro V, Fern'andez-Villar A, Valverde D, et al. Infuence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population [J]. Liver Int, 2008, 28(6): 835-839. [34] Kim SH, Kim SH, Yoon HJ, et al. GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans [J]. Tuberculosis, 2010, 90(1): 39-43. [35] Tang KS, Lee CM, Teng HC, el a1. UDP-glucuronosyltransferase 1A7 polymorphisms are associated with liver cirrhosis [J]. Biochem Biophys Res Commun, 2008, 366(3): 643-648. [36] 郝金奇, 陈冶, 李世明, 等. 尿苷二磷酸葡萄糖醛酸转移酶1A7基因多态性与抗结核药致肝损伤易感性的关系[J]. 中华传染病杂志, 2012, 30(3): 174-178. [37] Li M, Zhang YZ. Modulation of gene expression in cholesterol-lowering effect of electroacupuncture at Fenglong acupoint (ST40): a cDNA microarray study [J]. Int J Mol Med, 2007, 19(4): 617-629. [38] Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations [J]. Antimicrob Agents Chemother, 2010, 54(10): 4192-4200. [39] Fountain FF, Tolley EA, Jacobs AR, et al. Rifampin hepatotoxicity associated with treatment of latent tuberculosis infection [J]. Am J Med Sci, 2009, 337(5): 317-320. [40] Li LM, Chen L, Deng GH, et al. SLCO1B1*15 haplotype is associated with rifampininduced liver injury [J]. Mol Med Rep, 2012, 6(1): 75-82. |