[1] DJ Klionsky SDE. Autophagy as a regulated pathway of cellular degradation[J]. Science, 2000, 290(5497): 1717-1721. [2] Li J, Ni M, Lee B, et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells[J]. Cell Death Differ, 2008, 15(9): 1460-1471. [3] Alirezaei M, Kemball CC, Whitton JL. Autophagy, inflammation and neurodegenerative disease[J]. Eur J Neurosci, 2011, 33(2): 197-204. [4] Xu F, Gu JH, Qin ZH. Neuronal autophagy in cerebral ischemia[J]. Neurosci Bull, 2012, 28(5): 658-666. [5] Xu F, Li J, Ni W, et al. Peroxisome proliferator-activated receptor-gamma agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury[J]. PLoS One, 2013, 8(1): e55080. [6] Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance[J]. Autophagy, 2013, 9(9): 1321-1333. [7] Su J, Zhang T, Wang K, et al. Autophagy activation contributes to the neuroprotection of remote ischemic perconditioning against focal cerebral ischemia in rats[J]. Neurochem Res, 2014, 39(11): 2068-2077. [8] Aronson AL. Pharmacotherapeutics of the newer tetracyclines[J]. J Am Vet Med Assoc, 1980, 176(10 Spec No): 1061-1068. [9] 董文彬, 程佳祎, 陈爱瑛, 等. 微透析-高效液相色谱法测定米诺环素大鼠血液和脑内的药动学[J]. 中国临床药理学与治疗学, 2012, 17(6): 654-658. [10]Yrjanheikki J, Tikka T, Keinanen R, et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window[J]. Proc Natl Acad Sci USA, 1999, 96(23): 13496-13500. [11]Sakata H, Niizuma K, Yoshioka H, et al. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats[J]. J Neurosci, 2012, 32(10): 3462-3473. [12]Cui D, Wang L, Qi A, et al. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats[J]. PLoS One, 2012, 7(4): e35324. [13]Malagelada C, Xifro X, Badiola N, et al. Histamine H2-receptor antagonist ranitidine protects against neural death induced by oxygen-glucose deprivation[J]. Stroke, 2004, 35(10): 2396-2401. [14]钱晓丹, 罗春霞, 朱东亚. nNOS参与OGD介导的促神经干细胞增殖效应[J]. 中国临床药理学与治疗学, 2014, 19(10): 1099-1106. [15]Xu L, Fagan SC, Waller JL, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats[J]. BMC Neurol, 2004, 4: 7. [16]Fagan SC, Edwards DJ, Borlongan CV, et al. Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection[J]. Exp Neurol, 2004, 186(2): 248-251. [17]Yui J, Xie L, Fujinaga M, et al. Monitoring neuroprotective effects using positron emission tomography with [11C] ITMM, a radiotracer for metabotropic glutamate 1 receptor[J]. Stroke, 2013, 44(9): 2567-2572. [18]Switzer JA, Sikora A, Ergul A, et al. Minocycline prevents IL-6 increase after acute ischemic stroke[J]. Transl Stroke Res, 2012, 3(3): 363-368. [19]Kraus RL, Pasieczny R, Lariosa-Willingham K, et al. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity[J]. J Neurochem, 2005, 94(3): 819-827. [20]Matsukawa N, Yasuhara T, Hara K, et al. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke[J]. BMC Neurosci, 2009, 10: 126. [21]Tang C, Yang L, Jiang X, et al. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells[J]. Biochem Biophys Res Commun, 2014, 446(1): 105-112. [22]Liu WT, Huang CY, Lu IC, et al. Inhibition of glioma growth by minocycline is mediated through endoplasmic reticulum stress-induced apoptosis and autophagic cell death[J]. Neuro Oncol, 2013, 15(9): 1127-1141. [23]Wang P, Guan YF, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia[J]. Autophagy, 2012, 8(1): 77-87. [24]Yan W, Zhang H, Bai X, et al. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats[J]. Brain Res, 2011, 1402: 109-121. [25]Wang P, Xu TY, Wei K, et al. ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia[J]. Autophagy, 2014, 10(9): 1535-1548. [26]Li H, Gao A, Feng D, et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury[J]. Transl Stroke Res, 2014, 5(5): 618-626. [27]Wirawan E, Lippens S, Vanden BT, et al. Beclin1: a role in membrane dynamics and beyond[J]. Autophagy, 2012, 8(1): 6-17. [28]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J, 2000, 19(21): 5720-5728. [29]Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death[J]. J Cell Biol, 2005, 171(4): 603-614. [30]Wang JY, Xia Q, Chu KT, et al. Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy[J]. J Neuropathol Exp Neurol, 2011, 70(4): 314-322. |