[1]Andersen PK, Borgan O, Gill RD. Statistical models based on counting processes[M]. London: Springer, 1993:19-60.
[2]Kleinbaum DG, Klein M. Survival Analysis: A self-learning text[M].3rd ed. London: Springer, 2012:107-118.
[3]Lee ET, Wang JW. Statistical methods for survival data analysis[M]. New Jersey: John Wiley & Sons, 2015:167-168.
[4]Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus Everolimus in advanced renal-cell carcinoma[J]. N Engl J Med,2015, 373(19):1814-1823.
[5]Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study[J]. Lancet, 2016, 387(10022):968-977.
[6]钱俊. 生存分析中删失数据比例对Cox回归模型影响的研究[D]. 南方医科大学, 2009.
[7]Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration[J]. Cancer Chemother Rep, 1966, 50(3):163-170.
[8]Cox DR. Regression models and life tables[J].J Royal Statistical Society, 1972, 34(2):187-220.
[9]David WH, Stanley L, Susanne M. Applied survival analysis: regression modeling of time-to-event data[M]. 2nd ed. New Jersey:John Wiley & Sons, 2011:195-222.
[10]Lee ET,Wang JW. Statistical methods for survival data analysis[M].3rd ed. New Jersey:John Wiley & Sons, 2003:198-220.
[11]Klein JP. Moeschberger ML. Survival analysis: techniques for censored and truncated data[M]. Berlin: Springer Berlin, 2005:21-87.
[12]Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models [J]. Stat Med, 2005, 24(11):1713-1723.
[13]陈雯, 陈昂, 夏英华,等. 样本量及删失率对生存分析模型有效性和偏倚性的影响[J]. 中国卫生统计, 2013, 30(1):5-8. |