[1]Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms[J]. Expert Opin Drug Metab Toxicol, 2006, 2(2): 171-182.
[2]Thervet E, Legendre C, Beaune P, et al. Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update[J]. Pharmacogenomics, 2007, 8(7): 835-849.
[3]Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
[4]Shukla GC, Singh J. MicroRNAs: processing, maturation, target recognition and regulatory functions[J]. Mol Cell Pharmacol, 2011, 3(3): 83-92.
[5]Peng JF, Liu L, Guo CX, et al. Role of miR-511 in the regulation of OATP1B1 expression by free fatty acid[J]. Biomol Ther (Seoul), 2015, 23 (5): 400-406.
[6]Schmiedlin-Ren P, Thummel KE, Fisher JM, et al. Induction of CYP3A4 by 1 alpha,25-dihydroxyvitamin D3 is human cell line-specific and is unlikely to involve pregnane X receptor[J]. Drug Metab Dispos, 2001, 29 (11): 1446-1453.
[7]Matsubara T, Yoshinari K, Aoyama K, et al. Role of vitamin D receptor in the lithocholic acid-mediated CYP3A induction in vitro and in vivo[J]. Drug Metab Dispos, 2008, 36 (10): 2058-2063.
[8]Wang K, Chen S, Xie W, et al. Retinoids induce cytochrome P450 3A4 through RXR/VDR-mediated pathway[J]. Biochem Pharmacol, 2008, 75 (11): 2204-2013.
[9]Hatziapostolou M, Polytarchou C, Aggelidou E, et al. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis[J]. Cell, 2011, 147(6): 1233-1247.
[10]Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting[J]. Drug Metab Dispos, 2009, 37(10): 2112-2117.
[11]Takagi S, Nakajima M, Mohri T, et al. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4[J]. J Biol Chem, 2008, 283(15): 9674-9680.
[12]Wei ZL, Chen M, Zhang Y, et al. No correlation of hsa-miR-148a with expression of PXR or CYP3A4 in human livers from Chinese han population[J]. PLoS One, 2013, 8(3): e59141.
[13]Wei Z, Jiang S, Zhang Y, et al. The effect of microRNAs in the regulation of humanCYP3A4: a systematic study using a mathematical model[J]. Sci Rep, 2014 Mar, 4: 4283.
[14]Donato MT. Potential impact of steatosis on cytochrome P450 enzymes of human hepatocytes isolated from fatty liver grafts[J]. Drug Metab Dispos, 2006, 34(9): 1556-1562.
[15]Yoshinari K. Hepatic CYP3A expression is attenuated in obese mice fed a high-fat diet[J]. Pharm Res, 2006, 23(6): 1188-1200.
[16]Gomez-Lechon MJ, Jover R. Cytochrome p450 and steatosis[J]. Curr Drug Metab, 2009, 10(7): 692-699.
[17]Celikbilek M,Baskol M,Taheri S,et al.Circulating microRNAs in patients with non-alcoholic fatty liver disease[J].World J Hepato,2014,6(8):613-620.
[18]Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver[J]. Clin Chim Acta, 2013, 424: 99-103.
[19]Cheung O, Puri P, Eicken C, et al. nonalcoholic steatohepatitis is associated with altered hepatic Microrna expression[J]. Hepatology, 2008, 48(6): 1810-1820.
[20]Estep M, Armistead D, Hossain N, et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2010, 32(3): 487-497.
[21]Pogribny IP, Starlard-Davenport A, Tryndyak VP, et al. Difference in expression of hepatic microRNAs miR-29c, miR-34a,miR-155,and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice[J]. Lab Invest, 2010, 90(10): 1437-1446.
[22]Jin X, Chen YP, Kong M, et al. Transition from hepatic steatosis to steatohepatitis: unique microRNA patterns and potential downstream functions and pathways[J]. J Gastroenterol Hepatol, 2012, 27(2): 331-340.
[23]Gao Q, Wang XY, Zhou J, et al. Cell line misidentification: the case of the chang liver cell line[J]. Hepatology, 2011, 54: 1894-1895.
|