中国临床药理学与治疗学 ›› 2026, Vol. 31 ›› Issue (1): 125-132.doi: 10.12092/j.issn.1009-2501.2026.01.014
• 综述与讲座 • 上一篇
文一如1(
), 杨金拉姆1, 美嘎1, 李娜2, 录亚鹏2, 张琰2, 刘婕婷2,*(
)
收稿日期:2024-12-08
修回日期:2025-02-22
出版日期:2026-01-26
发布日期:2026-02-13
通讯作者:
刘婕婷
E-mail:wenyiru975@163.com;49005110@qq.com
作者简介:文一如,女,硕士研究生,研究方向:围术期器官保护。E-mail:基金资助:
Yiru WEN1(
), Jinlamu YANG1, Ga MEI1, Na LI2, Yapeng LU2, Yan ZHANG2, Jieting LIU2,*(
)
Received:2024-12-08
Revised:2025-02-22
Online:2026-01-26
Published:2026-02-13
Contact:
Jieting LIU
E-mail:wenyiru975@163.com;49005110@qq.com
摘要:
巨噬细胞极化和肠道菌群及其代谢产物是近年来的研究热点,一些已发表的研究表明,巨噬细胞极化与肠道菌群及其代谢产物具有一定的关联。肠道菌群及其代谢产物可诱导巨噬细胞向M1或M2型极化,从而产生促炎或抗炎反应,而这些反应又与器官损伤密切相关。本文就巨噬细胞极化与肠道菌群及其代谢产物在器官损伤中的相关研究作一综述,总结巨噬细胞极化的机制及相关通路,探讨肠道菌群及其代谢产物对巨噬细胞极化的影响以及其在相关疾病和器官损伤中的作用,以期为器官损伤机制及相应保护措施的研究提供新的思路。
中图分类号:
文一如, 杨金拉姆, 美嘎, 李娜, 录亚鹏, 张琰, 刘婕婷. 巨噬细胞极化与肠道菌群及其代谢产物在器官损伤中相关研究进展[J]. 中国临床药理学与治疗学, 2026, 31(1): 125-132.
Yiru WEN, Jinlamu YANG, Ga MEI, Na LI, Yapeng LU, Yan ZHANG, Jieting LIU. Progress in research on macrophage polarization, intestinal flora and their metabolites in organ injury[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 125-132.
| 1 |
Yan L, Wang J, Cai X, et al. Macrophage plasticity: signaling pathways, tissue repair, and regeneration[J]. Med Comm, 2024, 5 (8): e658.
doi: 10.1002/mco2.658 |
| 2 |
Sun X, Gao J, Meng X, et al. Polarized macrophages in periodontitis: Characteristics, function, and molecular signaling[J]. Front Immunol, 2021, 12, 763334.
doi: 10.3389/fimmu.2021.763334 |
| 3 |
Funes SC, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity[J]. Immunology, 2018, 154 (2): 186- 195.
doi: 10.1111/imm.12910 |
| 4 |
Ji J, Shu D, Zheng M, et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function[J]. Sci Rep, 2016, 6, 24838.
doi: 10.1038/srep24838 |
| 5 |
Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022, 10 (1): 38.
doi: 10.1186/s40168-022-01227-w |
| 6 |
Qiao X, Wang H, He Y, et al. Grape seed proanthocyanidin ameliorates LPS-induced acute lung injury by modulating M2a macrophage polarization via the TREM2/PI3K/ pathway[J]. Inflammation, 2023, 46 (6): 2147- 2164.
doi: 10.1007/s10753-023-01868-5 |
| 7 |
Zhang Q, Sioud M. Tumor-associated macrophage subsets: Shaping polarization and targeting[J]. Int J Mol Sci, 2023, 24 (8): 7493.
doi: 10.3390/ijms24087493 |
| 8 |
Strizova Z, Benesova I, Bartolini R, et al. M1/M2 macrophages and their overlaps - myth or reality?[J]. Clin Sci (Lond), 2023, 137 (15): 1067- 1093.
doi: 10.1042/CS20220531 |
| 9 |
Li C, Xu X, Wei S, et al. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer[J]. J Immunother Cancer, 2021, 9 (1): e001341.
doi: 10.1136/jitc-2020-001341 |
| 10 |
Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases[J]. Biochim Biophys Acta, 2010, 1802 (4): 396- 405.
doi: 10.1016/j.bbadis.2009.12.009 |
| 11 |
Chong S, Chen G, Dang Z, et al. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis[J]. Bioengineered, 2022, 13 (4): 8747- 8758.
doi: 10.1080/21655979.2022.2056690 |
| 12 |
Zhang Z, Leng Z, Kang L, et al. Alcohol inducing macrophage M2b polarization in colitis by modulating the TRPV1-MAPK/NF-κB pathways[J]. Phytomedicine, 2024, 130, 155580.
doi: 10.1016/j.phymed.2024.155580 |
| 13 |
Duo CC, Gong FY, He XY, et al. Soluble calreticulin induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 production by macrophages through mitogen-activated protein kinase (MAPK) and NFκB signaling pathways[J]. Int J Mol Sci, 2014, 15 (2): 2916- 2928.
doi: 10.3390/ijms15022916 |
| 14 | Liang L, Liu L, Zhou W, et al. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway [J]. Clin Sci (Lond), 2022, 136(4): 291-307. |
| 15 | 周珮珮, 崔亚娇, 赵炎, 等. 吡拉格雷对脑缺血再灌注不同时间点神经炎症及巨噬细胞M1/M2极化的影响[J]. 中国新药与临床杂志, 2023, 42 (10): 675- 679. |
| 16 |
Kang JK, Hyun CG. 4-hydroxy-7-methoxycoumarin inhibits inflammation in LPS-activated RAW264.7 macrophages by suppressing NF-κB and MAPK activation[J]. Molecules, 2020, 25 (19): 4424.
doi: 10.3390/molecules25194424 |
| 17 |
Liang Q, Fu J, Wang X, et al. circS100A11 enhances M2a macrophage activation and lung inflammation in children with asthma[J]. Allergy, 2023, 78 (6): 1459- 1472.
doi: 10.1111/all.15515 |
| 18 |
张贻帼, 景祎馨, 廖师师, 等. JAK2/STAT3通路通过调控巨噬细胞极化在肠缺血再灌注损伤中的作用[J]. 武汉大学学报(医学版), 2023, 44 (3): 286- 292.
doi: 10.14188/j.1671-8852.2022.0673 |
| 19 |
Huang SP, Guan X, Kai GY, et al. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway[J]. Chin J Nat Med, 2019, 17 (5): 372- 380.
doi: 10.1016/s1875-5364(19)30043-3 |
| 20 | 蒋彦玭, 林宏彬, 洪璞, 等. NLRP3炎症小体激活介导的巨噬细胞极化在糖尿病小鼠缺血性脑卒中后心肌损伤中的作用[J]. 中华麻醉学杂志, 2023, 43 (7): 853- 857. |
| 21 |
Wu K, Yuan Y, Yu H, et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice[J]. Blood, 2020, 136 (4): 501- 515.
doi: 10.1182/blood.2019003990 |
| 22 |
Huang H, Chen HW, Evankovich J, et al. Histones activate the NLRP3 inflammasome in kupffer cells during sterile inflammatory liver injury[J]. J Immunol, 2013, 191 (5): 2665- 2679.
doi: 10.4049/jimmunol.1202733 |
| 23 |
Shi X, Wang J, Lei Y, et al. Research progress on the PI3K/ signaling pathway in gynecological cancer (Review)[J]. Mol Med Rep, 2019, 19 (6): 4529- 4535.
doi: 10.3892/mmr.2019.10121 |
| 24 |
Zhou X, Li W, Wang S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis[J]. Cell Reports, 2019, 27 (4): 1176- 1189.
doi: 10.1016/j.celrep.2019.03.028 |
| 25 | 杨金拉姆, 美嘎, 董莉莳, 等. 妇产科手术术后加速康复指南/共识的现状分析及质量评价[J]. 药物流行病学杂志, 2024, 33 (6): 652- 665. |
| 26 |
Cristofori F, Dargenio VN, Dargenio C, et al. Anti-Inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body[J]. Front Immunol, 2021, 12 (1): 578386.
doi: 10.3389/fimmu.2021.578386 |
| 27 |
Chen X, Wu R, Li L, et al. Pregnancy-induced changes to the gut microbiota drive macrophage pyroptosis and exacerbate septic inflammation[J]. Immunity, 2023, 56 (2): 336- 352.
doi: 10.1016/j.immuni.2023.01.015 |
| 28 |
Li R, Xie L, Li L, Chen X, et al. The gut microbial metabolite, 3, 4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice[J]. Acta Pharm Sin B, 2022, 12 (1): 182- 196.
doi: 10.1016/j.apsb.2021.05.029 |
| 29 |
Li H, Xie J, Guo X, et al. Bifidobacterium spp. and their metabolite lactate protect against acute pancreatitis via inhibition of pancreatic and systemic inflammatory responses[J]. Gut Microbes, 2022, 14 (1): 2127456.
doi: 10.1080/19490976.2022.2127456 |
| 30 |
Lu T, Li Q, Lin W, et al. Gut microbiota-derived glutamine attenuates liver ischemia/reperfusion injury via macrophage metabolic reprogramming[J]. Cell Mol Gastroenterol Hepatol, 2023, 15 (5): 1255- 1275.
doi: 10.1016/j.jcmgh.2023.01.004 |
| 31 |
Chen Y, Huang X, Liu A, et al. Lactobacillus reuteri vesicles regulate mitochondrial function of macrophages to promote mucosal and cutaneous wound healing[J]. Adv Sci (Weinh), 2024, 11 (24): e2309725.
doi: 10.1002/advs.202309725 |
| 32 |
Yang Y, Karampoor S, Mirzaei R, et al. The interplay between microbial metabolites and macrophages in cardiovascular diseases: a comprehensive review[J]. Int Immunopharmacol, 2023, 121 (PtA): 110546.
doi: 10.1016/j.intimp.2023.110546 |
| 33 |
Hirao H, Nakamura K, Kupiec-Weglinski JW. Liver ischaemia–reperfusion injury: a new understanding of the role of innate immunity[J]. Nat Rev Gastroenterol Hepatol, 2022, 19 (4): 239- 256.
doi: 10.1038/s41575-021-00549-8 |
| 34 |
Tacke F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66 (6): 1300- 1312.
doi: 10.1016/j.jhep.2017.02.026 |
| 35 |
Krishnan S, Ding Y, Saedi N, et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages[J]. Cell Reports, 2018, 23 (4): 1099- 1111.
doi: 10.1016/j.celrep.2018.03.109 |
| 36 |
马坦途, 李星霏, 李涛. 基于多学科诊疗模式的胰腺癌综合治疗[J]. 临床肝胆病杂志, 2024, 40 (12): 2548- 2552.
doi: 10.12449/JCH241229 |
| 37 |
Zhu Z, Yi B, Tang Z, et al. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis[J]. BMC cancer, 2023, 23 (1): 1044.
doi: 10.1186/s12885-023-11557-z |
| 38 |
Tang TWH, Chen HC, Chen CY, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation, 2019, 139 (5): 647- 659.
doi: 10.1161/CIRCULATIONAHA.118.035235 |
| 39 |
Huang Y, Lin F, Tang R, et al. Gut microbial metabolite trimethylamine N-oxide aggravates pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2022, 66 (4): 452- 460.
doi: 10.1165/rcmb.2021-0414OC |
| 40 |
美嘎, 杨金拉姆, 赵彦会, 等. 胃肠道手术ERAS指南/共识质量评价及内容分析[J]. 兰州大学学报(医学版), 2024, 50 (4): 61- 70.
doi: 10.13885/j.issn.1000-2812.2024.04.010 |
| 41 |
张晶玉, 王一涵, 李珺, 等. 自噬促进大鼠肠缺血再灌注损伤的细胞铁死亡[J]. 中国临床药理学与治疗学, 2023, 28 (1): 36- 41.
doi: 10.12092/j.issn.1009-2501.2023.01.005 |
| 42 |
Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111 (6): 2247- 2252.
doi: 10.1073/pnas.1322269111 |
| 43 |
Wang L, Gong Z, Zhang X, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation[J]. Gut Microbes, 2020, 12 (1): 1- 20.
doi: 10.1080/19490976.2020.1819155 |
| 44 |
Liu Q, Tian X, Maruyama D, et al. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids’ immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321 (1): L65- L78.
doi: 10.1152/ajplung.00421.2020 |
| 45 | Zhao Y, Sun H, Chen Y, et al. Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization[J]. Bio, 2023, 14 (5): e0198723. |
| 46 |
Celorrio M, Shumilov K, Friess SH. Gut microbial regulation of innate and adaptive immunity after traumatic brain injury[J]. Neural Regen Res, 2024, 19 (2): 272- 276.
doi: 10.4103/1673-5374.379014 |
| 47 |
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19 (1): 55- 71.
doi: 10.1038/s41579-020-0433-9 |
| 48 |
姜华, 徐振宇, 何池义. 粪菌移植治疗轻中度溃疡性结肠炎的初步临床研究[J]. 皖南医学院学报, 2022, 41 (1): 22- 24.
doi: 10.3969/j.issn.1002-0217.2022.01.006 |
| 49 |
Pan X, Zhu Q, Pan LL, et al. Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy[J]. Pharmacol Ther, 2022, 238, 108176.
doi: 10.1016/j.pharmthera.2022.108176 |
| 50 |
Cutolo M, Campitiello R, Gotelli E, et al. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis[J]. Front Immunol, 2022, 13, 867260.
doi: 10.3389/fimmu.2022.867260 |
| 51 |
Thomas J, Sachdeva M, Dhar S, et al. Delphi consensus statement on the role of probiotics in the treatment of atopic dermatitis[J]. Cureus, 2024, 16 (7): e64583.
doi: 10.7759/cureus.64583 |
| 52 |
He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity[J]. Cell Metab, 2021, 33 (5): 988- 1000.
doi: 10.1016/j.cmet.2021.03.002 |
| 53 |
Cheng L, Wu H, Cai X, et al. A Gpr35-tuned gut microbe-brain metabolic axis regulates depressive-like behavior[J]. Cell Host Microbe, 2024, 32 (2): 227- 243.
doi: 10.1016/j.chom.2023.12.009 |
| 54 |
Shao J, Ge T, Tang C, Wang G, et al. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis[J]. Inflamm Res, 2022, 71 (10/11): 1389- 1401.
doi: 10.1007/s00011-022-01629-4 |
| [1] | 姜建湘, 杜珮琰, 刘玉荣, 吕海宏. 三甲胺N-氧化物与桥本甲状腺炎的相关性研究[J]. 中国临床药理学与治疗学, 2025, 30(9): 1208-1214. |
| [2] | 邢英, 郑嵘炅, 姜春晖, 玛依拉·卡哈尔, 木胡牙提·乌拉斯汉. 利拉鲁肽治疗后2型糖尿病合并冠心病患者肠道菌群变化及其与糖、脂代谢指标相关性[J]. 中国临床药理学与治疗学, 2025, 30(8): 1084-1091. |
| [3] | 崔涵雨, 胡长平. 巨噬细胞极化与心血管疾病研究进展[J]. 中国临床药理学与治疗学, 2025, 30(4): 548-555. |
| [4] | 刘静, 侯凯, 张丽. 紫铆因改善非酒精性脂肪性肝炎及作用机制研究[J]. 中国临床药理学与治疗学, 2025, 30(3): 355-365. |
| [5] | 吴义锟, 郭红敏, 李艳, 穆伟歌, 黄淑芸, 朱久玲, 杨竹, 钟树志. 基于调节肠道菌群的疏风解毒胶囊改善甲型流感病毒肺炎小鼠肺损伤的机制研究[J]. 中国临床药理学与治疗学, 2025, 30(10): 1351-1360. |
| [6] | 杨娟娟, 李浩林, 杨天宁, 程伟刚, 王振东, 金芳梅, 年芳红, 苏小军, 王家强, 王海平, 王海东. 祖师麻膏药对胶原诱导型关节炎小鼠炎症及骨破坏的抑制作用[J]. 中国临床药理学与治疗学, 2024, 29(9): 979-987. |
| [7] | 王梦珂, 甘超, 袁玥, 邹婧怡, 王珍, 李淑云, 吕海宏. 2型糖尿病肾脏病与TMAO的相关性研究[J]. 中国临床药理学与治疗学, 2024, 29(6): 661-670. |
| [8] | 李雅亭, 岳红梅, 刘苗苗, 许金回, 武兴东, 朱浩斌. 磷酸二酯酶4抑制剂作为特发性肺纤维化药物治疗的可能性[J]. 中国临床药理学与治疗学, 2023, 28(7): 818-823. |
| [9] | 张强, 郑华军, 李权. 基于肠道菌群干预在治疗自闭症谱系障碍中的研究进展[J]. 中国临床药理学与治疗学, 2023, 28(4): 475-480. |
| [10] | 王丹, 鄢晓丽, 张渊. 幽门螺杆菌感染影响胃癌免疫治疗的研究进展[J]. 中国临床药理学与治疗学, 2023, 28(2): 228-234. |
| [11] | 周佳婷, 张 玄, 谢子兰, 李 智. 肠道菌群与左旋甲状腺素:相互影响与临床意义[J]. 中国临床药理学与治疗学, 2023, 28(11): 1307-1314. |
| [12] | 赵阳婷, 陈重阳, 潘斌晶, 吕小羽, 刘靖芳. 三甲胺N-氧化物:骨质疏松治疗的潜在靶点[J]. 中国临床药理学与治疗学, 2023, 28(10): 1161-1167. |
| [13] | 王欣, 孙合亮, 张庆伟, 刘存明, 王忠云, 杨春. 小剂量艾司氯胺酮在胸腔镜下肺叶切除术患者术后镇痛中的作用[J]. 中国临床药理学与治疗学, 2022, 27(9): 998-1003. |
| [14] | 陈健, 兰宇, 吴勇, 沈伯雄. 肠道菌群紊乱对吸入麻醉患者术后认知功能障碍的影响[J]. 中国临床药理学与治疗学, 2022, 27(6): 639-644. |
| [15] | 陈宇, 顾兵, 李华南. 调理肠道菌群:治疗痛风的一种新策略[J]. 中国临床药理学与治疗学, 2022, 27(11): 1307-1314. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||