[1]Katz Y. Anesthesia and the Meyer-Overton rule. II. A solution theory view of anesthesia and perturbations[J]. J Theor Biol, 1994, 167(2): 99-105.
[2]Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal [J]. Nat Rev Neurosci, 2008, 9(5): 370-386.
[3]Crick FH. Thinking about the brain[J]. Sci Am, 1979, 241(3): 219-232.
[4]Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proc Natl Acad Sci U S A, 2003, 100(24): 13940-13945.
[5]Han X, Boyden ES. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution[J]. PloS One, 2007, 2(3): e299.
[6]Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 2007, 446(7136): 633-639.
[7]Dittgen T, Nimmerjahn A, Komai S, et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo[J]. Proc Natl Acad of Sci U S A, 2004, 101(52): 18206-18211.
[8]Adamantidis AR, Zhang F, Aravanis AM, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 2007, 450(7168): 420-424.
[9]Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits[J]. Nature, 2010, 464(7292): 1155-1160.
[10]Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8(9): 1263-1268.
[11]Taylor NE, Van Dort CJ, Kenny JD, et al. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia[J]. Proc Natl Acad Sci U S A, 2016, 113: 12826-12831.
[12]Macdonald PA, Monchi O. Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson's disease: implications for cognitive function[J]. Parkinsons Dis, 2011, 2011: 572743.
[13]Yuan XS, Wang L, Dong H, et al. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus[J]. Elife, 2017, 6: e29055.
[14]Heal DJ, Smith SL, Gosden J, et al. Amphetamine, past and present--a pharmacological and clinical perspective[J]. J Psychopharmacology (Oxford, England), 2013, 27(6): 479-496.
[15]Qu WM, Huang ZL, Xu XH, et al. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil[J]. J Neurosci, 2008, 28(34): 8462-8469.
[16]Heal DJ, Cheetham SC, Smith SL. The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety[J]. Neuropharmacology, 2009, 57(7-8): 608-618.
[17]Swanson JM, Wigal TL, Volkow ND. Contrast of medical and nonmedical use of stimulant drugs, basis for the distinction, and risk of addiction: comment on Smith and Farah (2011)[J]. Psychol Bull, 2011, 137(5): 742-748.
[18]Billiard M. Narcolepsy: current treatment options and future approaches[J]. Neuropsychiatric disease and treatment, 2008, 4(3): 557-566.
[19]Monti JM, Monti D. The involvement of dopamine in the modulation of sleep and waking[J]. Sleep Med Rev, 2007, 11(2): 113-133.
[20]Taylor NE, Chemali JJ, Brown EN, et al. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia[J]. Anesthesiology, 2013, 118(1): 30-39.
[21]Solt K, Cotten JF, Cimenser A, et al. Methylphenidate actively induces emergence from general anesthesia[J]. Anesthesiology, 2011, 115(4): 791-803.
[22]Chemali JJ, Van Dort CJ, Brown EN, et al. Active emergence from propofol general anesthesia is induced by methylphenidate[J]. Anesthesiology, 2012, 116(5): 998-1005.
[23]Armbruster BN, Li X, Pausch MH, et al. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand[J]. Proc Natl Acad Sci U S A, 2007, 104(12): 5163-5168.
[24]Dong S, Rogan SC, Roth BL. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs[J]. Nat Protoc, 2010, 5(3): 561-573.
[25]Roth BL. DREADDs for Neuroscientists[J]. Neuron, 2016, 89(4): 683-694.
[26]Wulff P, Arenkiel BR. Chemical genetics: receptor-ligand pairs for rapid manipulation of neuronal activity[J]. Curr Opin Neurobiol, 2012, 22(1): 54-60.
[27]Nawaratne V, Leach K, Suratman N, et al. New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug)[J]. Mol Pharmacol, 2008, 74(4): 1119-1131.
[28]Ferguson SM, Eskenazi D, Ishikawa M, et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization[J]. Nat Neurosci, 2011, 14(1): 22-24.
[29]Farrell MS, Pei Y, Wan Y, et al. A Galphas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons[J]. Neuropsychopharmacology, 2013, 38(5): 854-862.
[30]Siuda ER, Al-Hasani R, Mccall JG, et al. Chemogenetic and Optogenetic Activation of Galphas Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States[J]. Neuropsychopharmacology, 2016, 41(8): 2011-2023.
[31]Oishi Y, Xu Q, Wang L, et al. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice[J]. Nat Commun, 2017, 8(1): 734.
[32]Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[J]. J Biol Rhythms, 2006, 21(6): 482-493.
[33]Takahashi K, Kayama Y, Lin JS, et al. Locus coeruleus neuronal activity during the sleep-waking cycle in mice[J]. Neuroscience, 2010, 169(3): 1115-1126.
[34]Aston-Jones G, Chen S, Zhu Y, et al. A neural circuit for circadian regulation of arousal[J]. Nat Neurosci, 2001, 4(7): 732-738.
[35]Foote SL, Bloom FE, Aston-Jones G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity[J]. Physiol Rev, 1983, 63(3): 844-914.
[36]Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation[J]. Curr neuropharmacol, 2008, 6(3): 235-253.
[37]Hu FY, Hanna GM, Han W, et al. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine beta-hydroxylase knockout mice[J]. Anesthesiology, 2012, 117(5): 1006-1017.
[38]Vazey EM, Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia[J]. Proc Natl Acad Sci U S A, 2014, 111(10): 3859-3864.
[39]Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters[J]. Proc Natl Acad Sci U S A, 1992, 89(12): 5547-5551.
[40]Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells[J]. Science (New York, NY), 1995, 268(5218): 1766-1769.
[41]Adams R, Brown GT, Davidson M, et al. Efficacy of dexmedetomidine compared with midazolam for sedation in adult intensive care patients: a systematic review[J]. Brit J Anaesth, 2013, 111(5): 703-710.
[42]Zhang Z, Ferretti V, Guntan I, et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists[J]. Nat Neurosci, 2015, 18(4): 553-561.
[43]Gunaydin LA, Yizhar O, Berndt A, et al. Ultrafast optogenetic control[J]. Nat Neurosci, 2010, 13(3): 387-392.
[44]Moore JT, Chen J, Han B, et al. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis[J]. Curr Biol, 2012, 22(21): 2008-2016.
[45]Luo T, Leung LS. Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia[J]. Anesthesiology, 2009, 111(4): 725-733.
[46]Lazarus M, Chen JF, Urade Y, et al. Role of the basal ganglia in the control of sleep and wakefulness[J]. Curr Opin Neurobiol, 2013, 23(5): 780-785.
[47]Saper CB, Fuller PM, Pedersen NP, et al. Sleep state switching [J]. Neuron, 2010, 68(6): 1023-1042.
|