欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是

中国临床药理学与治疗学 ›› 2025, Vol. 30 ›› Issue (5): 631-639.doi: 10.12092/j.issn.1009-2501.2025.05.006

• 药物治疗学 • 上一篇    下一篇

年龄、血液嗜酸性粒细胞、FeNO和血清IgE作为预测哮喘患者嗜酸性表型的生物标志物

高佳萌1,2,马圆1,沈瑶2,王芳1,钱宇豪3,陈智鸿1   

  1. 1复旦大学附属中山医院呼吸科,上海  200000;2上海市浦东医院复旦大学附属浦东医院呼吸科,上海  200100,3复旦大学附属闵行医院上海市闵行区中心医院呼吸科,上海  200200

  • 收稿日期:2024-05-10 修回日期:2024-06-28 出版日期:2025-05-26 发布日期:2025-05-13
  • 通讯作者: 陈智鸿,女,博士,教授,主任医师,研究方向:气道炎症疾病的基础与临床研究。 E-mail: chen.zhihong@zs-hospital.sh.cn
  • 作者简介:高佳萌,女,在读硕士,研究方向:呼吸科疾病的基础与临床研究。 E-mail: gaojiameng2000@163.com 马圆,女,在读硕士,研究方向:呼吸科疾病的基础与临床研究。 E-mail: 21211210011@m.fudan.edu.cn
  • 基金资助:
    国家自然科学基金(81970023,82270026) 

Age, blood eosinophils, FeNO and serum IgE as biomarkers for the prediction of eosinophilic phenotype among asthmatic patients

GAO Jiameng1,2, MA Yuan1, SHEN Yao2, WANG Fang1, QIAN Yuhao3, CHEN Zhihong1   

  1. 1Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai 200000, China; 2Department of Respiratory Medicine, Pudong Hospital, Fudan University, Shanghai 200100, China; Department of Pulmonary and Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 200200, China
  • Received:2024-05-10 Revised:2024-06-28 Online:2025-05-26 Published:2025-05-13

摘要:

目的:确定代表性临床生物标志物,通过诱导痰分析评估个体患者的嗜酸性状态。方法:对100名成功收集诱导痰的哮喘患者进行了一项横断面研究。根据痰嗜酸性细胞计数百分比(sputum eosinophil count,SEC%)是否≥3%将受试者进一步分为过敏性哮喘(EA)和非过敏性哮喘(NEA)。收集了人口统计学和临床数据,包括基本信息、常规血液检查、肺功能检查、支气管舒张剂反应性检查、呼出一氧化氮(fractional exhaled nitric oxide,FeNO)、哮喘控制测试(asthma control test,ACT)和哮喘控制问卷(asthma control questionnaire,ACQ)。所有与EA显著相关的变量都是多因素Logistic回归分析的候选变量,同时我们制定了一种EA的预测模型。结果:在单因素分析中,与NEA受试者相比,EA患者年龄更大,哮喘控制和肺功能更差,血液嗜酸性粒细胞、血清IgE和FeNO的值更高。多因素Logistic回归分析显示,年龄、FeNO、血清IgE和血液嗜酸性粒细胞计数(blood eosinophil count,BEC)被确定为嗜酸性哮喘的独立危险因素,这些因素都包含在量表中。结论:研究发现,结合评估包括年龄、FeNO、血清IgE和BEC的组合,可以应用于临床医生识别嗜酸性哮喘,而且比诱导痰检测更简单、更快速、更经济、更易获得。

关键词: 嗜酸性哮喘, 非嗜酸性哮喘, 诱导痰, 列线图, 预测

Abstract:

AIM: To identify surrogate clinical biomarkers for profiling the eosinophilic status of an individual patient over induced sputum analysis. METHODS: We conducted a cross-sectional study on 100 asthmatic patients whose induced sputum was successfully collected. Subjects were further classified into either EA or NEA based on whether the percentage of sputum eosinophil count (SEC%) was≥3%. Demographic and clinical data were collected, including basic information, routine blood tests, lung function tests, bronchodilator reversibility tests, fractional exhaled nitric oxide (FeNO), the Asthma Control Test (ACT) and the Asthma Control Questionnaire (ACQ). All variables significantly associated with EA were candidates for multivariate logistic regression analysis. A scoring system presented as a nomogram for the prediction of EA was developed. RESULTS: In the univariate analysis, compared with NEA subjects, those with EA were of older age and had worse asthma control and lung function in addition to higher values of blood eosinophils, serum IgE and FeNO. Multivariable logistic regression analysis revealed that age, FeNO, serum IgE and blood eosinophil count (BEC) were identified as independent risk factors for eosinophilic asthma, which were all included in the nomogram. CONCLUSION: A combination assessment including age, FeNO, serum IgE and BEC could be applicable to clinicians in identifying eosinophilic asthma and is easier, faster, more inexpensive and more readily available than the induced sputum test.

Key words: eosinophils asthma, noneosinophilic asthma,  , induced sputum, nomogram, pridictio

中图分类号: