[1] Hoofnagle JH, Bjornsson ES.Drug-induced liver injury-types and phenotypes[J]. N Engl J Med, 2019, 381(3): 264-273. [2] Stravitz RT, Lee WM.Acute liver failure[J]. Lancet, 2019, 394(10201): 869-881. [3] Wang Y, Zou C, Wee A, et al.Comparison of the prognostic models for mortality in idiosyncratic drug-induced liver injury[J]. Hepatol Int, 2023, 17(2): 488-498. [4] Uetrecht J.Mechanistic studies of idiosyncratic DILI: Clinical Implications[J]. Front Pharmacol, 2019, 10: 837. [5] Daly AK, Donaldson PT, Bhatnagar P, et al.HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin[J]. Nat Genet, 2009, 41(7): 816-819. [6] Nicoletti P, Aithal GP, Chamberlain TC, et al.Drug-induced liver injury due to flucloxacillin: Relevance of multiple human leukocyte antigen alleles[J]. Clin Pharmacol Ther, 2019, 106(1): 245-253. [7] Clare KE, Miller MH, Dillon JF.Genetic factors influencing drug-induced liver injury: Do they have a role in prevention and diagnosis ?[J]. Curr Hepatol Rep, 2017, 16(3): 258-264. [8] Donaldson PT, Daly AK, Henderson J, et al.Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury[J]. J Hepatol, 2010,53(6): 1049-1053. [9] Lucena MI, Molokhia M, Shen Y, et al.Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles[J]. Gastroenterology, 2011, 141(1): 338-347. [10] Nicoletti P, Dellinger A, Li YJ, et al.Identification of reduced ERAP2 expression and a novel HLA allele as components of a risk score for susceptibility to liver injury due to amoxicillin-clavulanate[J]. Gastroenterology, 2023, 164(3): 454-466. [11] Singer JB, Lewitzky S, Leroy E, et al.A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury[J]. Nat Genet, 2010, 42(8): 711-714. [12] Kindmark A, Jawaid A, Harbron CG, et al.Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis[J]. Pharmacogenomics J, 2008, 8(3): 186-195. [13] Bessone F, Bjornsson ES.Drug-induced liver injury due to biologics and immune check point inhibitors[J]. Med Clin North Am, 2023, 107(3): 623-640. [14] Fontana RJ, Bjornsson ES, Reddy R, et al.The evolving profile of idiosyncratic drug-induced liver injury[J]. Clin Gastroenterol Hepatol, 2023, 21(8): 2088-2099. [15] Bjornsson ES, Gunnarsson BI, Grondal G, et al.Risk of drug-induced liver injury from tumor necrosis factor antagonists[J]. Clin Gastroenterol Hepatol, 2015, 13(3): 602-608. [16] Bruno CD, Fremd B, Church RJ, et al.HLA associations with infliximab-induced liver injury[J]. Pharmacogenomics J, 2020, 20(5): 681-686. [17] Bjornsson HK, Gudbjornsson B, Bjornsson ES.Infliximab-induced liver injury: Clinical phenotypes, autoimmunity and the role of corticosteroid treatment[J]. J Hepatol, 2022, 76(1): 86-92. [18] de Joode K, Heersche N, Basak EA, et al. Review-The impact of pharmacogenetics on the outcome of immune checkpoint inhibitors[J]. Cancer Treat Rev, 2024, 122: 102662. [19] Sung C, An J, Lee S, et al.Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer[J]. Nat Cancer, 2023, 4(6): 844-859. [20] Navarro VJ, Barnhart H, Bonkovsky HL, et al.Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network[J]. Hepatology, 2014, 60(4): 1399-1408. [21] Li C, Rao T, Chen X, et al.HLA-B*35:01 Allele is a potential biomarker for predicting polygonum multiflorum-induced liver injury in humans[J]. Hepatology, 2019, 70(1): 346-357. [22] Yang WN, Pang LL, Zhou JY, et al.Single-nucleotide polymorphisms of HLA and Polygonum multiflorum-induced liver injury in the Han Chinese population[J]. World J Gastroenterol, 2020, 26(12): 1329-1339. [23] Hoofnagle JH, Bonkovsky HL, Phillips EJ, et al.HLA-B*35:01 and green tea-induced liver injury[J]. Hepatology, 2021,73(6): 2484-2493. [24] Line J, Ali SE, Grice S, et al.Investigating the immune basis of green tea extract induced liver injury in healthy donors expressing HLA-B*35:01[J]. Chem Res Toxicol, 2023, 36(12): 1872-1875. [25] Halegoua-demarzio D, Navarro V, Ahmad J, et al. Liver injury associated with turmeric-a growing problem: Ten cases from the drug-induced liver injury network [DILIN][J]. Am J Med, 2023, 136(2): 200-206. [26] Vuppalanchi R, Bonkovsky HL, Ahmad J, et al.Garcinia cambogia, either alone or in combination with green tea, causes moderate to severe liver injury[J]. Clin Gastroenterol Hepatol, 2022, 20(6): e1416-e1425. [27] Nakamura R, Arakawa N, Tanaka Y, et al.Significant association between HLA-B*35:01 and onset of drug-induced liver injury caused by Kampo medicines in Japanese patients[J]. Hepatol Res, 2023, 53(5): 440-449. [28] Mosedale M, Watkins PB.Understanding idiosyncratic toxicity: lessons learned from drug-induced liver injury[J]. J Med Chem, 2020, 63(12): 6436-6461. [29] Kim SH, Saide K, Farrell J, et al.Characterization of amoxicillin- and clavulanic acid-specific T cells in patients with amoxicillin-clavulanate-induced liver injury[J]. Hepatology, 2015, 62(3): 887-899. [30] Monshi MM, Faulkner L, Gibson A, et al.Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury[J]. Hepatology, 2013, 57(2): 727-739. [31] Wuillemin N, Adam J, Fontana S, et al.HLA haplotype determines hapten or p-i T cell reactivity to flucloxacillin[J]. J Immunol, 2013, 190(10): 4956-4964. [32] Illing PT, Vivian JP, Dudek NL, et al.Immune self-reactivity triggered by drug-modified HLA-peptide repertoire[J]. Nature, 2012, 486(7404): 554-558. [33] Ahmad J, Dellinger A, Nicoletti P, et al.Clinical and HLA associations of fluoroquinolone induced liver injury: results from the Drug-Induced Liver Injury Network[J]. Am J Gastroenterol, 2025, doi: 10.14309/ ajg.0000000000003457. [34] Conlon C, Li YJ, Ahmad J, et al.Clinical characteristics and HLA associations of azithromycin-induced liver injury[J]. Aliment Pharmacol Ther, 2024, 60(6): 787-795. [35] Bonkovsky HL, Ghabril M, Nicoletti P, et al.Drug-induced liver injury (DILI) ascribed to non-steroidal anti-inflammatory drugs (NSAIDs) in the USA-Update with genetic correlations[J]. Liver Int, 2024, 44(6): 1409-1421. [36] Asif BA, Koh C, Phillips EJ, et al.Vancomycin-induced liver injury, DRESS, and HLA-A *32:01[J]. J Allergy Clin Immunol Pract, 2024, 12(1): 168-174. [37] Nicoletti P, Dellinger A, Li YJ, et al.HLA-B*53:01 is a significant risk factor of liver injury due to phenytoin and other antiepileptic drugs in African Americans[J]. Am J Gastroenterol, 2024, 119(1): 200-202. [38] Chalasani N, Li YJ, Dellinger A, et al.Clinical features, outcomes, and HLA risk factors associated with nitrofurantoin-induced liver injury[J]. J Hepatol, 2023, 78(2): 293-300. [39] Devarbhavi H, Patil M, Menon M.Association of human leukocyte antigen-B*13:01 with dapsone-induced liver injury[J]. Br J Clin Pharmacol, 2022, 88(3): 1369-1372. [40] Fontana RJ, Li YJ, Phillips E, et al.Allopurinol hepatotoxicity is associated with human leukocyte antigen Class I alleles[J]. Liver Int, 2021, 41(8): 1884-1893. [41] Nicoletti P, Devarbhavi H, Goel A, et al.Genetic risk factors in drug-induced liver injury due to isoniazid-containing antituberculosis drug regimens[J]. Clin Pharmacol Ther, 2021, 109(4): 1125-1135. [42] Li YJ, Phillips EJ, Dellinger A, et al.Human leukocyte antigen B*14:01 and B*35:01 are associated with trimethoprim-sulfamethoxazole induced liver injury[J]. Hepatology, 2021, 73(1): 268-281. [43] Li X, Jin S, Fan Y, et al.Association of HLA-C*03:02 with methimazole-induced liver injury in Graves' disease patients[J]. Biomed Pharmacother, 2019, 117: 109095. [44] Fontana RJ, Cirulli ET, Gu J, et al.The role of HLA-A*33:01 in patients with cholestatic hepatitis attributed to terbinafine[J]. J Hepatol, 2018, 69(6): 1317-1325. [45] Nicoletti P, Aithal GP, Bjornsson ES, et al.Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in hla and other genes in a genome-wide association study[J]. Gastroenterology, 2017, 152(5): 1078-1089. [46] Urban T J, Nicoletti P, Chalasani N, et al.Minocycline hepatotoxicity: Clinical characterization and identification of HLA-B *35:02 as a risk factor[J]. J Hepatol, 2017, 67(1): 137-144. [47] Nicoletti P, Werk AN, Sawle A, et al.HLA-DRB1*16: 01-DQB1*05: 02 is a novel genetic risk factor for flupirtine-induced liver injury[J]. Pharmacogenet Genomics, 2016, 26(5): 218-224. [48] Xu CF, Johnson T, Wang X, et al.HLA-B*57:01 confers susceptibility to pazopanib-associated liver injury in patients with cancer[J]. Clin Cancer Res, 2016, 22(6): 1371-1377. [49] Schaid DJ, Spraggs CF, Mcdonnell SK, et al.Prospective validation of HLA-DRB1*07:01 allele carriage as a predictive risk factor for lapatinib-induced liver injury[J]. J Clin Oncol, 2014, 32(22): 2296-2303. [50] O'donohue J, Oien KA, Donaldson P, et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association[J]. Gut, 2000, 47(5): 717-720. [51] Hirata K, Takagi H, Yamamoto M, et al.Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study[J]. Pharmacogenomics J, 2008, 8(1): 29-33. [52] Dawes P, Moulder C.Perhexiline hepatitis and HLA-B8[J]. Lancet, 1982, 2(8289): 109. [53] Carr DF, Bourgeois S, Chaponda M, et al.Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population[J]. J Antimicrob Chemother, 2017, 72(4): 1152-1162. [54] Pavlos R, Deshpande P, Chopra A, et al.New genetic predictors for abacavir tolerance in HLA-B*57:01 positive individuals[J]. Hum Immunol, 2020, 81(6): 300-304. [55] Fontana RJ, Li YJ, Vuppalanchi R, et al.ERAP-1 and ERAP-2 variants in liver injury following COVID-19 mRNA vaccination: A US multicenter study[J]. Am J Gastroenterol, 2024, 119(8): 1496-1505. [56] Urrutia-maldonado E, Ales-palmer M, Munoz DRP, et al. The relation between activator and inhibitor killer-cell immunoglobulin-like receptors and hepatotoxicity in oncological treatment[J]. Minerva Pediatr (Torino), 2023, 75(5): 668-673. [57] Puig M, Ananthula S, Venna R, et al.Alterations in the HLA-B*57:01 Immunopeptidome by Flucloxacillin and Immunogenicity of Drug-Haptenated Peptides[J]. Front Immunol, 2020, 11: 629399. [58] Thomson P, Hammond S, Naisbitt DJ.Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance[J]. Clin Exp Allergy, 2022, 52(12): 1379-1390. [59] Tai Y, Wang Q, Korner H, et al.Molecular mechanisms of T cells activation by dendritic cells in autoimmune diseases[J]. Front Pharmacol, 2018, 9: 642. [60] Gibson A, Faulkner L, Lichtenfels M, et al.The effect of inhibitory signals on the priming of drug hapten-specific T cells that express distinct vbeta receptors[J]. J Immunol, 2017, 199(4): 1223-1237. [61] Cardone M, Garcia K, Tilahun ME, et al.A transgenic mouse model for HLA-B*57:01-linked abacavir drug tolerance and reactivity[J]. J Clin Invest, 2018, 128(7): 2819-2832. [62] Susukida T, Kuwahara S, Song B, et al.Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity[J]. Commun Biol, 2021, 4(1): 1137. [63] Song B, Aoki S, Liu C, et al.The PD1 inhibitory pathway and mature dendritic cells contribute to abacavir hypersensitivity in human leukocyte antigen transgenic PD1 knockout mice[J]. Toxicology, 2021, 463: 152971. [64] Ananthula S, Krishnaveni SK, Cardone M, et al.Development of mouse models with restricted HLA-B *57:01 presentation for the study of flucloxacillin-driven T-cell activation and tolerance in liver injury[J]. J Allergy Clin Immunol, 2023, 152(2): 486-499. [65] Guo Y, Fan Y, Qiu J, et al.Polymorphisms in CTLA4 influence incidence of drug-induced liver injury after renal transplantation in Chinese recipients[J]. PLoS One, 2012, 7(12): e51723. [66] Aithal GP, Ramsay L, Daly AK, et al.Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity[J]. Hepatology, 2004, 39(5): 1430-1440. [67] Pachkoria K, Lucena MI, Crespo E, et al.Analysis of IL-10, IL-4 and TNF-alpha polymorphisms in drug-induced liver injury (DILI) and its outcome[J]. J Hepatol, 2008, 49(1): 107-114. [68] Li Y, Tang H, Qi H, et al.rs1800796 of the IL6 gene is associated with increased risk for anti-tuberculosis drug-induced hepatotoxicity in Chinese Han children[J]. Tuberculosis (Edinb), 2018, 111: 71-77. [69] Carr DF, Alfirevic A, Tugwood JD, et al.Molecular and genetic association of interleukin-6 in tacrine-induced hepatotoxicity[J]. Pharmacogenet Genomics, 2007, 17(11): 961-972. [70] Kim SH, Kim SH, Yoon HJ, et al.TNF-alpha genetic polymorphism -308G/A and antituberculosis drug-induced hepatitis[J]. Liver Int, 2012, 32(5): 809-814. [71] Liang X, Zhang J, Zhu Y, et al.Specific genetic polymorphisms of IL10-592 AA and IL10-819 TT genotypes lead to the key role for inducing docetaxel-induced liver injury in breast cancer patients[J]. Clin Transl Oncol, 2013, 15(4): 331-334. [72] Mallal S, Phillips E, Carosi G, et al.HLA-B*5701 screening for hypersensitivity to abacavir[J]. N Engl J Med, 2008, 358(6): 568-579. [73] Alfirevic A, Pirmohamed M.Predictive genetic testing for drug-induced liver injury: considerations of clinical utility[J]. Clin Pharmacol Ther, 2012, 92(3): 376-380. [74] Aithal GP.Pharmacogenetic testing in idiosyncratic drug-induced liver injury: current role in clinical practice[J]. Liver Int, 2015, 35(7): 1801-1808. [75] Swen JJ, van der Wouden CH, Manson LE, et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study[J]. Lancet, 2023, 401(10374): 347-356. [76] Stephens C, Andrade RJ.Genetic predisposition to drug-induced liver injury[J]. Clin Liver Dis, 2020, 24(1): 11-23. [77] Stephens C, Lucena MI, Andrade RJ.Genetic risk factors in the development of idiosyncratic drug-induced liver injury[J]. Expert Opin Drug Metab Toxicol, 2021, 17(2): 153-169. [78] Kullak-ublick GA, Andrade RJ, Merz M, et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment[J]. Gut, 2017, 66(6): 1154-1164. [79] Ariyoshi N, Iga Y, Hirata K, et al.Enhanced susceptibility of HLA-mediated ticlopidine-induced idiosyncratic hepatotoxicity by CYP2B6 polymorphism in Japanese[J]. Drug Metab Pharmacokinet, 2010, 25(3): 298-306. [80] Su SC, Chen CB, Chang WC, et al.HLA Alleles and CYP2C9*3 as Predictors of Phenytoin Hypersensitivity in East Asians[J]. Clin Pharmacol Ther, 2019, 105(2): 476-485. [81] Chanhom N, Jittikoon J, Wattanapokayakit S, et al.The association of HLA-B*35 and GSTT1 genotypes and hepatotoxicity in Thai people living with HIV[J]. J Pers Med, 2022, 12(6): 940. |