Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2026, Vol. 31 ›› Issue (1): 28-39.doi: 10.12092/j.issn.1009-2501.2026.01.003
Zishuai WEN1,5(
), Shengnan LIANG4, Yuling RUAN1, Wentao ZHANG3, Mengying LI5, Fangfang WU2, Junhui LIU1, Huazhen QIN1,*(
)
Received:2025-02-17
Revised:2025-06-05
Online:2026-01-26
Published:2026-02-13
Contact:
Huazhen QIN
E-mail:wenzishuai802@163.com;937824429@qq.com
CLC Number:
Zishuai WEN, Shengnan LIANG, Yuling RUAN, Wentao ZHANG, Mengying LI, Fangfang WU, Junhui LIU, Huazhen QIN. Exploring the mechanism of Alpiniae Officinarum Rhizoma and two other Alpinia Roxb medicinal materials in treating gastric ulcer with cold syndrome based on network pharmacology, molecular docking and experimental validation[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 28-39.
Fig.3 GO functional enrichment analysis of three kinds of Alpinia Roxb. Chinese medicinal materials in the treatment of gastric ulcer cold syndrome A: the three types of functions and their Enrichment Scores involved in the GO analysis. B: the proportion of Rich Factors, P and Count values in the GO analysis.
Fig.4 Enrichment analysis of KEGG pathway in the treatment of gastric ulcer cold syndrome with three kinds of Alpinia Roxb. Chinese medicinal materials
| Core components | Core targets | Core pathways |
| Quercetin | PIK3CA | PI3K-Akt signaling pathway |
| Galangin | MAPK1 | Proteoglycans in cancer |
| 5-Hydroxy-7-(4'-hydroxy-3'-methoxyphenyl)- 1-phenyl-3-heptanone | AKT1 | Lipid and atherosclerosis |
| Pinobanksin | MAP2K1 | Kaposi sarcoma-associated herpesvirus infection |
| Galangin 3-methyl ether | RAF1 | MicroRNAs in cancer |
| Kumatakenin | RELA | Human cytomegalovirus infection |
| Pinocembrin | EGFR | Hepatitis B |
| Apigenin | MAPK14 | Prostate cancer |
| p-Hydroxy-trans-cinnamaldehyde | VEGFA | AGE-RAGE signaling pathway in diabetic complications |
| 3-methylkaempferol | SRC | Endocrine resistance |
| 1'-hydroxychavicol acetate | mTOR | Fluid shear stress and atherosclerosis |
| 3-[4-(acetyloxy)-3-methoxyphenyl] | STAT3 | TNF signaling pathway |
| Trans-p-coumaryl diacetate | MMP9 | C-type lectin receptor signaling pathway |
| 5-Hydroxy-1-(4-hydroxyphenyl)-7- (4-hydroxy- 3-methoxyphenyl)-3-heptanone | JUN | HIF-1 signaling pathway |
| 1'-acetoxychavicol acetate | IL6 | EGFR tyrosine kinase inhibitor resistance |
Table 1 The core components, core targets and core pathway tables of three kinds of Alpinia Roxb. Chinese medicinal materials in the treatment of gastric ulcer cold syndrome
| Core components | Core targets | Core pathways |
| Quercetin | PIK3CA | PI3K-Akt signaling pathway |
| Galangin | MAPK1 | Proteoglycans in cancer |
| 5-Hydroxy-7-(4'-hydroxy-3'-methoxyphenyl)- 1-phenyl-3-heptanone | AKT1 | Lipid and atherosclerosis |
| Pinobanksin | MAP2K1 | Kaposi sarcoma-associated herpesvirus infection |
| Galangin 3-methyl ether | RAF1 | MicroRNAs in cancer |
| Kumatakenin | RELA | Human cytomegalovirus infection |
| Pinocembrin | EGFR | Hepatitis B |
| Apigenin | MAPK14 | Prostate cancer |
| p-Hydroxy-trans-cinnamaldehyde | VEGFA | AGE-RAGE signaling pathway in diabetic complications |
| 3-methylkaempferol | SRC | Endocrine resistance |
| 1'-hydroxychavicol acetate | mTOR | Fluid shear stress and atherosclerosis |
| 3-[4-(acetyloxy)-3-methoxyphenyl] | STAT3 | TNF signaling pathway |
| Trans-p-coumaryl diacetate | MMP9 | C-type lectin receptor signaling pathway |
| 5-Hydroxy-1-(4-hydroxyphenyl)-7- (4-hydroxy- 3-methoxyphenyl)-3-heptanone | JUN | HIF-1 signaling pathway |
| 1'-acetoxychavicol acetate | IL6 | EGFR tyrosine kinase inhibitor resistance |
| Core components | Core targets | ||
| AKT1 | MAP2K1 | mTOR | |
| Quercetin | ?8.3 | ?9.3 | ?8.2 |
| Galangin | ?8.0 | ?8.7 | ?8.0 |
| 5-Hydroxy-7-(4'-hydroxy-3'-methoxyphenyl)-1-phenyl-3-heptanone | ?9.3 | ?8.7 | ?7.9 |
| Pinobanksin | ?7.7 | ?8.4 | ?7.5 |
| Galangin 3-methyl ether | ?7.8 | ?7.8 | ?7.7 |
| Kumatakenin | ?7.7 | ?8.2 | ?7.7 |
| Pinocembrin | ?8.0 | ?8.1 | ?7.9 |
| Apigenin | ?8.0 | ?8.7 | ?7.8 |
Table 2 Binding free energy table of core components and core targets docking
| Core components | Core targets | ||
| AKT1 | MAP2K1 | mTOR | |
| Quercetin | ?8.3 | ?9.3 | ?8.2 |
| Galangin | ?8.0 | ?8.7 | ?8.0 |
| 5-Hydroxy-7-(4'-hydroxy-3'-methoxyphenyl)-1-phenyl-3-heptanone | ?9.3 | ?8.7 | ?7.9 |
| Pinobanksin | ?7.7 | ?8.4 | ?7.5 |
| Galangin 3-methyl ether | ?7.8 | ?7.8 | ?7.7 |
| Kumatakenin | ?7.7 | ?8.2 | ?7.7 |
| Pinocembrin | ?8.0 | ?8.1 | ?7.9 |
| Apigenin | ?8.0 | ?8.7 | ?7.8 |
Fig.6 Molecular docking 3D model A: Quercetin-AKT1 molecular docking; B: Quercetin-MAP2K1 molecular docking; C: Quercetin-mTOR molecular docking; D: Galangin-AKT1 molecular docking; E: Galangin-MAP2K1 molecular docking; F: Galangin-mTOR molecular docking.
Fig.7 Effects of three kinds of Alpinia Roxb. Chinese medicinal materials on gastric mucosal injury in gastric ulcer cold syndrome rats ($\bar x $±s, n=8) A: morphology of gastric tissue in each group of rats; B: gastric ulcer index; C: gastric ulcer inhibition rate. cP<0.01, compared with the control group; eP<0.05, fP<0.01, compared with the model group; hP<0.05, compared with the high dose group of Alpiniae Officinarum Rhizoma.
Fig.8 Effects of three kinds of Alpinia Roxb. Chinese medicinal materials on pathological changes of gastric tissue in gastric ulcer cold syndrome rats A: Control; B: Model; C: Zingiberis Rhizoma (10.8 g/kg); D: Alpiniae Officinarum Rhizoma (10.8 g/kg); E: Alpiniae Officinarum Rhizoma (5.4 g/kg); F: Galangae Rhizoma (9.0 g/kg); G: Galangae Rhizoma (4.5 g/kg); H: Galangae Fructus (10.8 g/kg); I: Galangae Fructus (5.4 g/kg).
Fig.9 Effects of three kinds of Alpinia Roxb. Chinese medicinal materials on AKT1, MAP2K1 and mTOR protein expression in gastric tissue of gastric ulcer cold syndrome rats ($\bar x $±s, n=8) cP<0.01, compared with the control group; eP<0.05, fP<0.01, compared with the model group; hP<0.05, compared with the low dose group of Galangae Rhizoma; kP<0.05, compared with the low dose group of Galangae Fructus.
| 1 | 方敬贤, 张炼, 李晶, 等. 基于网络药理学及动物实验探究白及非多糖成分治疗胃溃疡的作用及机制[J]. 中国中药杂志, 2023, 48 (16): 4446- 4458. |
| 2 | 姜巍, 王垂杰. 胃溃疡的中医辨治新思路[J]. 中华中医药学刊, 2010, 28 (6): 1179- 1181. |
| 3 | 魏广义, 刘楠楠, 王淑美, 等. 抗胃溃疡中药实验研究进展[J]. 中药药理与临床, 2020, 36 (5): 228- 231. |
| 4 | 王泽楠, 郝建宇. 益生菌在胃溃疡治疗中的研究进展[J]. 中国实用内科杂志, 2016, 36 (9): 747- 749. |
| 5 |
Gong HY, Zhao N, Zhu CL, et al. Treatment of gastric ulcer, traditional Chinese medicine may be a better choice[J]. J Ethnopharmacol, 2024, 324, 117793.
doi: 10.1016/j.jep.2024.117793 |
| 6 | 田代华. 黄帝内经·素问 [M]. 北京: 人民卫生出版社, 2005: 177. |
| 7 | 莫单丹, 柳俊辉, 丘海冰, 等. 高良姜等4味山姜属中药药性与效用的本草文献研究[J]. 中国中药杂志, 2018, 43 (13): 2648- 2653. |
| 8 | 何杰滢, 桂蓓, 陈艳芬, 等. 基于网络药理学及实验验证探讨良附丸治疗功能性消化不良的作用机制[J]. 中国中药杂志, 2022, 47 (14): 3853- 3862. |
| 9 | 丘海冰, 谢鹏, 秦华珍, 等. 5味山姜属中药乙醇提取物对胃溃疡寒证大鼠血清cAMP、cGMP的影响及其胃组织病理学观察[J]. 辽宁中医药大学学报, 2019, 21 (6): 28- 31. |
| 10 | 秦华珍, 谢旭格, 黄少敏, 等. 3味山姜属中药黄酮类成分对大鼠环核苷酸水平及交感神经-肾上腺轴的影响[J]. 世界中医药, 2023, 18 (17): 2441- 2444, 2451. |
| 11 | 廖韵诺, 赵凯丽, 郭宏伟. 中药网络药理学的研究应用与挑战[J]. 中草药, 2024, 55 (12): 4204- 4213. |
| 12 | 凌晓颖, 陶嘉磊, 孙逊, 等. 基于网络药理学的连花清瘟方抗冠状病毒的物质基础及机制探讨[J]. 中草药, 2020, 51 (7): 1723- 1730. |
| 13 | 秦华珍, 黄少敏, 黄焕迪, 等. 3味山姜属中药黄酮类成分对胃溃疡寒证大鼠肠道短链脂肪酸含量的影响[J]. 中华中医药学刊, 2022, 40 (6): 5- 10. |
| 14 |
Li Q, Hu X, Xuan Y, et al. Kaempferol protects ethanolinduced gastric ulcers in mice via pro-inflammatory cytokines and NO[J]. Acta Biochim Biophys Sin, 2018, 50 (3): 246- 253.
doi: 10.1093/abbs/gmy002 |
| 15 | 陶弘景, 尚志钧, 辑校. 名医别录 [M]. 北京: 人民卫生出版社, 1986: 152-153. |
| 16 | 王宁. 杜若的本草考证[J]. 中药材, 1995, 18 (10): 529- 531. |
| 17 | 陈嘉谟撰, 王淑民等校点. 本草蒙筌 [M]. 北京: 人民卫生出版社, 1988: 97-98. |
| 18 | 国家药典委员会. 中华人民共和国药典. 一部[M]. 北京: 中国医药科技出版社, 2025: 163-164, 308-309. |
| 19 | 国家中医药管理局《中华本草》编委会. 中华本草 [M]. 上海: 上海科学技术出版社, 1999: 596-606, 7743-7744, 7748-7750. |
| 20 |
Qiu W, Leibowitz B, Zhang L, et al. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/Akt/p53 axis[J]. Oncogene, 2010, 29 (11): 1622- 1632.
doi: 10.1038/onc.2009.451 |
| 21 |
Zhang M, Zhang X. The role of PI3K/AKT/FOXO signaling in psoriasis[J]. Arch Dermatol Res, 2019, 311 (2): 83- 91.
doi: 10.1007/s00403-018-1879-8 |
| 22 | 桂文琪, 方媛, 聊晓玉, 等. 基于网络药理学和体内实验验证霍山石斛治疗胃溃疡的作用机制[J]. 中国实验方剂学杂志, 2022, 28 (7): 151- 161. |
| 23 |
Ma S, Wu Q, Zhao Z, et al. Mechanisms of Dendrobium officinale polysaccharides in repairing gastric mucosal injuries based on mitogen-activated protein kinases (MAPK) signaling pathway[J]. Bioengineered, 2022, 13 (1): 71- 82.
doi: 10.1080/21655979.2021.2006951 |
| 24 |
Ke Y, Zhan L, Lu T, et al. Polysaccharides of Dendrobium officinale Kimura & Migo leaves protect against ethanol-induced gastric mucosal injury via the AMPK/mTOR signaling pathway in vitro and vivo[J]. Front Pharmacol, 2020, 11, 526349.
doi: 10.3389/fphar.2020.526349 |
| 25 |
Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J]. Science, 2005, 307 (5712): 1098- 1101.
doi: 10.1126/science.1106148 |
| 26 |
Balaha MF, Almalki ZS, Alahmari AK, et al. AMPK/mTOR-driven autophagy & Nrf2/HO-1 cascade modulation by amentoflavone ameliorates indomethacin-induced gastric ulcer[J]. Biomed Pharmacother, 2022, 151, 113200.
doi: 10.1016/j.biopha.2022.113200 |
| [1] | LIU Xun, ZHOU Tingting, ZHU Zibing, TAN Jin, LI Qun. Arecoline promotes oral submucous fibrosis by upregulating PI3K/Akt/mTOR signaling pathway in vivo and in vitro [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(7): 865-875. |
| [2] |
LI Qian, WANG Zhenxiang, LIANG Yanting, MA Weiwei, ZHANG Zhen, WANG Xia, AN Qiong.
Effect and mechanism of Tamarix chinensis Lour. on streptozotocin-induced diabetic rats based on network pharmacology, molecular docking and experimental validation
[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(7): 907-920.
|
| [3] | GUO Ling, PENG Xiaoyong, DENG Mengsheng, ZHU Yingguo, WENG Changmei, CHENG Xiangyun, WANG Jianmin, LI Tao, LIU Liangming, YANG Guangming. Protective effects of transient receptor potential vanilloid 1 agonist capsaicin on traumatic hemorrhagic shock rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(6): 721-731. |
| [4] | YANG Weidong, WANG Ruiqi, WANG Haihua, YE Tianxiang, CHENG Shenghui, LI Huifang, HAO Xuliang. Flavonoid extract from Dracocephalum rupestre hance in improving gouty arthritis: study based on network pharmacology, molecular docking and animal experiment [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(6): 763-773. |
| [5] | LI Mingqi, WANG Yinghe, ZHAO Xiaolu, BAO Xiaomei, YUE Xin, REN Guiqiang, MA Yuehong. Mechanism of total flavonoids of Carthamus tinctorius L.against hepatic fibrosis based on LC-MS/MS combined with network pharmacology and pharmacology experiments [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(5): 586-598. |
| [6] | LIU Gen, YANG Weidong, LI Jia, LIU Cong, HAO Xuliang. Exploring the mechanism of action of BLJZF in the treatment of lipid abnormalities [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(4): 464-476. |
| [7] | ZHANG Huihui, JIN Le, LIU Su, CHEN Hongxiao, CHEN Zhaolin, TANG Liqin. Network pharmacological analysis of berberine inhibiting breast cancer cell proliferation and in vitro cell validation#br# [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(3): 332-338. |
| [8] |
FU Xiaoyan, GONG Zihan, GAO Guangmiao, YANG Biqian, DENG Yi, WANG Liping, YANG Xiujuan, YANG Zhijun.
Exploring the mechanism of Licorice in the treatment of liver injury induced by Semen Strychni based on network pharmacology, molecular docking and animal experiments
[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(10): 1326-1341.
|
| [9] | LEI Chengjing, YU Miao, LI Yange, TANG Xiaoguang, ZHAO Fanrong, ZHU Tiantian. Exploring the mechanism of Xin Mai Jia in inhibiting hypertensive cardiac hypertrophy based on network pharmacology and animal experiments [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(1): 32-41. |
| [10] | Celimuge, Hudeligen, XU Liang. Network pharmacology-molecular docking analysis and experimental validation to explore the protective mechanism of Mongolian medicine Gaoyou on renal function [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(9): 968-978. |
| [11] | SU Qihui, WANG Jing, LUO Rongrong, HUANG Yurong, LI Xin, WANG Yingli, JIA Ying. Study on the mechanism of action of Siheifang on zebrafish melanin based on metabolomics and network pharmacology [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(9): 988-1001. |
| [12] | LI Wen, JIANG Hugang, WANG Xinqiang, LI Yingdong, LIU Kai, ZHAO Xinke. Exploring the mechanism of Radix Angelica sinensis and Astragalus mongholicus extract therapy for radiationinduced myocardial fibrosis based on network pharmacology and experimental validation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(6): 601-611. |
| [13] | LI Yulei, LI Ping, MA Jinzhu, LING Yunyun, ZUO Mengyu, DING Zhen Yu, XUE Liangjun. Effects of a new bromobenzene substituted trifluoromethyl benzocyclopentanone WW02 on the proliferation of lung cancer cells [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(6): 645-652. |
| [14] | SU Xin, LUO Lin. UPLC-QE-MS combined network pharmacological analysis of the mechanism of ulcerative colitis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(3): 241-251. |
| [15] | YU Dan, LIU Zongtao, YAN Xiaohong, CHENG Jing, LI lin. Effects of osthole on renal oxidative stress injury in aged spontaneously hypertensive rats by regulating PI3K/Akt/mTOR signaling pathway [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(3): 277-282. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||