Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2026, Vol. 31 ›› Issue (1): 88-95.doi: 10.12092/j.issn.1009-2501.2026.01.010
Zhiwang WANG(
), Yue ZHANG, Ping QUAN, Yue ZHAO, Bei TIAN, Haijing DUAN, Ruiqiong WANG
Received:2025-01-18
Revised:2025-03-04
Online:2026-01-26
Published:2026-02-13
CLC Number:
Zhiwang WANG, Yue ZHANG, Ping QUAN, Yue ZHAO, Bei TIAN, Haijing DUAN, Ruiqiong WANG. Progress in the study of interleukin-17A-mediated signaling network regulating airway remodeling in asthma[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 88-95.
| 信号网络 | 有效组分/ 小分子抑制剂 | 不同效应及组织病理变化 | 作用机制 | 参考文献 |
| RORγt | CpG寡脱氧核苷酸 | 恢复Th17细胞免疫平衡;抑制气道上皮GC增生、Muc5ac高表达;减少沉积;气道壁变薄 | 下调RORγt、IL-17A表达 | [ |
| 人参皂苷Rg1 | 减轻炎症反应 | IL-17A与RORγt表达下调 | [ | |
| BIX119(RORγt抑制剂) | 缓解气道炎症反应;降低气道高反应性 | 抑制IL-17A/RORγt信号 通路 | [ | |
| STAT3 | 阳和平喘颗粒 | 减轻炎症细胞浸润;抑制上皮下胶原纤维沉积 | IL-17A、 STAT3表达下调 | [ |
| 紫草素 | 抑制GC增生、Muc5ac高表达 | 下调IL-17A、p-STAT3的 表达 | [ | |
| TGF-β1 | 豆甾醇 | 减少炎症细胞数量;抑制ASMCs增殖 | IL-17A、TGF-β1蛋白表达 下调 | [ |
| CpG寡脱氧核苷酸 | 气道壁变薄;减少胶原沉积 | 下调 IL-17A、TGF-β1表达 | [ | |
| NF-κB | microRNA-133b | 缓解气道黏液高分泌;ASM变薄 | 下调IL-17A、NF-κB表达 | [ |
| BAY11- (NF-κB小分子抑制剂) | 减缓ASM紧张度;降低气道高反应性 | 抑制NF-κB核转位 | [ | |
| 罗汉果苷V | 减少炎症细胞浸润;抑制GC增生、ASMCs增殖; 降低气道高反应性 | 阻断IL-17A/NF-κB信号 通路 | [ | |
| p38 MAPK | SB203580 (p38 MAPK抑制剂) | 减轻气道炎症;抑制GC分化;Muc5ac高表达; 提高气道顺应性 | 下调IL-17A、p38 MAPK 表达 | [ |
| 毛喉鞘蕊花提取物 | 抑制GC增生;减缓ASM紧张度 | IL-17A、p38 MAPK表达 下降 | [ | |
| 合成生物碱 | 抑制ECM沉积 | 下调IL-17A/p38 MAPK信号通路 | [ | |
| VEGF | 茴香胶囊 | 降低气道胶原沉积占比;减缓支气管管壁 紧张度;改善肺组织纤维化 | IL-17A、VEGF mRNA表达 下调 | [ |
| TNF-α | MRS5980 (腺苷受体激动剂) | 抑制GC化生与胶原沉积;ASM变薄 | IL-17A、TNF-α表达下调 | [ |
| NLRP3 | MCC950 (NLRP3抑制剂) | 减轻炎症反应 | 下调NLRP3炎症小体活性 | [ |
Table 1 The mechanism of effective components/small molecule inhibitors regulating asthma airway remodeling through IL-17A mediated signaling network
| 信号网络 | 有效组分/ 小分子抑制剂 | 不同效应及组织病理变化 | 作用机制 | 参考文献 |
| RORγt | CpG寡脱氧核苷酸 | 恢复Th17细胞免疫平衡;抑制气道上皮GC增生、Muc5ac高表达;减少沉积;气道壁变薄 | 下调RORγt、IL-17A表达 | [ |
| 人参皂苷Rg1 | 减轻炎症反应 | IL-17A与RORγt表达下调 | [ | |
| BIX119(RORγt抑制剂) | 缓解气道炎症反应;降低气道高反应性 | 抑制IL-17A/RORγt信号 通路 | [ | |
| STAT3 | 阳和平喘颗粒 | 减轻炎症细胞浸润;抑制上皮下胶原纤维沉积 | IL-17A、 STAT3表达下调 | [ |
| 紫草素 | 抑制GC增生、Muc5ac高表达 | 下调IL-17A、p-STAT3的 表达 | [ | |
| TGF-β1 | 豆甾醇 | 减少炎症细胞数量;抑制ASMCs增殖 | IL-17A、TGF-β1蛋白表达 下调 | [ |
| CpG寡脱氧核苷酸 | 气道壁变薄;减少胶原沉积 | 下调 IL-17A、TGF-β1表达 | [ | |
| NF-κB | microRNA-133b | 缓解气道黏液高分泌;ASM变薄 | 下调IL-17A、NF-κB表达 | [ |
| BAY11- (NF-κB小分子抑制剂) | 减缓ASM紧张度;降低气道高反应性 | 抑制NF-κB核转位 | [ | |
| 罗汉果苷V | 减少炎症细胞浸润;抑制GC增生、ASMCs增殖; 降低气道高反应性 | 阻断IL-17A/NF-κB信号 通路 | [ | |
| p38 MAPK | SB203580 (p38 MAPK抑制剂) | 减轻气道炎症;抑制GC分化;Muc5ac高表达; 提高气道顺应性 | 下调IL-17A、p38 MAPK 表达 | [ |
| 毛喉鞘蕊花提取物 | 抑制GC增生;减缓ASM紧张度 | IL-17A、p38 MAPK表达 下降 | [ | |
| 合成生物碱 | 抑制ECM沉积 | 下调IL-17A/p38 MAPK信号通路 | [ | |
| VEGF | 茴香胶囊 | 降低气道胶原沉积占比;减缓支气管管壁 紧张度;改善肺组织纤维化 | IL-17A、VEGF mRNA表达 下调 | [ |
| TNF-α | MRS5980 (腺苷受体激动剂) | 抑制GC化生与胶原沉积;ASM变薄 | IL-17A、TNF-α表达下调 | [ |
| NLRP3 | MCC950 (NLRP3抑制剂) | 减轻炎症反应 | 下调NLRP3炎症小体活性 | [ |
| 1 |
黄柯婷, 王志旺, 梁可克, 等. IL-13 激活杯状细胞参与哮喘气道黏液高分泌的研究新进展[J]. 中国现代应用药学, 2023, 40 (10): 1416- 1421.
doi: 10.13748/j.cnki.issn1007-7693.20221880 |
| 2 |
Wang X, Gao Y, Yang Q, et al. Pingchuanning decoction attenuates airway inflammation by suppressing autophagy via phosphatidylinositol 3‐kinase/protein kinase B/mammalian target of rapamycin signaling pathway in rat models of asthma[J]. J Cell Biochem, 2019, 120 (3): 3833- 3844.
doi: 10.1002/jcb.27665 |
| 3 |
中国医药教育协会慢性气道疾病专业委员会, 中国哮喘联盟. 重度哮喘诊断与处理中国专家共识(2024)[J]. 中华医学杂志, 2024, 104 (20): 1759- 1789.
doi: 10.3760/cma.j.cn112137-20231117-01120 |
| 4 |
Varricchi G, Brightling CE, Grainge C, et al. Airway remodelling in asthma and the epithelium: On the edge of a new era[J]. Eur Respir J, 2024, 63 (4): 2301619.
doi: 10.1183/13993003.01619-2023 |
| 5 | 席建宏, 黄柯婷, 王志旺, 等. PI3K/Akt信号通路调控哮喘气道黏液高分泌的研究现状[J]. 中国临床药理学杂志, 2022, 38 (22): 2779- 2782. |
| 6 |
Hynes GM, Hinks TSC. The role of interleukin-17 in asthma: a protective response?[J]. ERJ Open Res, 2020, 6 (2): 00364- 2019.
doi: 10.1183/23120541.00364-2019 |
| 7 |
Ritzmann F, Lunding LP, Bals R, et al. IL-17 cytokines and chronic lung diseases[J]. Cells, 2022, 11 (14): 2132.
doi: 10.3390/cells11142132 |
| 8 |
徐蕾, 贺新华, 陈昂, 等. 支气管哮喘患者外周血蛋白磷酸酶1A水平与气道重塑的关系[J]. 中国医药导报, 2021, 18 (25): 98- 102.
doi: 10.20047/j.issn1673-7210.2021.25.023 |
| 9 | Yu Q, Shi YJ, Shu C, et al. Andrographolide inhibition of Th17‐regulated cytokines and JAK1/STAT3 signaling in OVA‐stimulated asthma in mice[J]. Evid Based Complement Alternat Med, 2021, 2021 (1): 6862073. |
| 10 |
Rex DAB, Dagamajalu S, Gouda MM, et al. A comprehensive network map of IL-17A signaling pathway[J]. J Cell Commun Signal, 2023, 17 (1): 209- 215.
doi: 10.1007/s12079-022-00686-y |
| 11 |
Jetten AM, Cook DN. (Inverse) agonists of retinoic acid–related orphan receptor γ: regulation of immune responses, inflammation, and autoimmune disease[J]. Annu Rev Pharmacol Toxicol, 2020, 60 (1): 371- 390.
doi: 10.1146/annurev-pharmtox-010919-023711 |
| 12 |
Kumar R, Theiss AL, Venuprasad K. RORγt protein modifications and IL-17-mediated inflammation[J]. Trends Immunol, 2021, 42 (11): 1037- 1050.
doi: 10.1016/j.it.2021.09.005 |
| 13 |
Xie Y, Abel PW, Casale TB, et al. TH17 cells and corticosteroid insensitivity in severe asthma[J]. J Allergy Clin Immunol, 2022, 149 (2): 467- 479.
doi: 10.1016/j.jaci.2021.12.769 |
| 14 |
Li H, Ye Q, Lin Y, et al. CpG oligodeoxynucleotides attenuate RORγt-mediated Th17 response by restoring histone deacetylase-2 in cigarette smoke-exposure asthma[J]. Cell Biosci, 2021, 11 (1): 92.
doi: 10.1186/s13578-021-00607-3 |
| 15 | 周亚兵, 蒋思韵, 王利维, 等. PM2.5对哮喘大鼠IL-17/IL-23炎症介质的影响及人参皂苷Rg1干预研究[J]. 世界中医药, 2021, 16 (10): 1520- 1525. |
| 16 |
Lamb D, De Sousa D, Quast K, et al. RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma[J]. Respir Res, 2021, 22 (1): 158.
doi: 10.1186/s12931-021-01743-7 |
| 17 |
Nikolskii AA, Shilovskiy IP, Barvinskaia ED, et al. Role of STAT3 transcription factor in pathogenesis of bronchial asthma[J]. Biochemistry (Mosc), 2021, 86 (11): 1489- 1501.
doi: 10.1134/s0006297921110122 |
| 18 |
Gavino AC, Nahmod K, Bharadwaj U, et al. STAT3 inhibition prevents lung inflammation, remodeling, and accumulation of Th2 and Th17 cells in a murine asthma model[J]. Allergy, 2016, 71 (12): 1684- 1692.
doi: 10.1111/all.12937 |
| 19 |
Camargo LN, Santos TM, Andrade FCP, et al. Bronchial vascular remodeling is attenuated by anti-IL-17 in asthmatic responses exacerbated by LPS[J]. Front Pharmacol, 2020, 11, 1269.
doi: 10.3389/fphar.2020.01269 |
| 20 |
吕川, 朱慧志, 刘向国, 等. 基于IL-6/JAK2/STAT3信号轴研究阳和平喘颗粒调控哮喘大鼠气道重塑作用机制[J]. 海南医学院学报, 2024, 30 (1): 15- 20+28.
doi: 10.13210/j.cnki.jhmu.20231030.001 |
| 21 |
Zhang Y, Chen L, Ouyang H. Shikonin alleviates asthma phenotypes in mice via an airway epithelial STAT3-dependent mechanism[J]. Open Med (Wars), 2024, 19 (1): 20241016.
doi: 10.1515/med-2024-1016 |
| 22 | Chen H, Guo SX, Zhang S, et al. MiRNA‐620 promotes TGF‐β1‐induced proliferation of airway smooth muscle cell through controlling PTEN/AKT signaling pathway[J]. Kaohsiung J Med Sci, 2020, 36 (11): 869- 877. |
| 23 |
Park YH, Oh EY, Han H, et al. Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway[J]. Exp Mol Med, 2019, 51 (5): 1- 12.
doi: 10.1038/s12276-019-0258-7 |
| 24 |
Zheng Y, Li L, Cai T. Cordyceps polysaccharide ameliorates airway inflammation in an ovalbumin-induced mouse model of asthma via TGF-β1/Smad signaling pathway[J]. Respir Physiol Neurobiol, 2020, 276, 103412.
doi: 10.1016/j.resp.2020.103412 |
| 25 |
Huang S, Zhou R, Yuan Y, et al. Stigmasterol alleviates airway inflammation in OVA-induced asthmatic mice via inhibiting the TGF-β1/Smad2 and IL-17A signaling pathways[J]. Aging (Albany NY), 2024, 16 (7): 6478.
doi: 10.18632/aging.205716 |
| 26 |
Kim DI, Song MK, Lee K. Diesel exhaust particulates enhances susceptibility of LPS-induced acute lung injury through upregulation of the IL-17 cytokine-derived TGF-β1/collagen I expression and activation of NLRP3 inflammasome signaling in mice[J]. Biomolecules, 2021, 11 (1): 67.
doi: 10.3390/biom11010067 |
| 27 |
Li H, Lin Y, Ye Q, et al. Airway inflammation and remodeling of cigarette smoking exposure ovalbumin-induced asthma is alleviated by CpG oligodeoxynucleotides via affecting dendritic cell-mediated Th17 polarization[J]. Int Immunopharmacol, 2020, 82, 106361.
doi: 10.1016/j.intimp.2020.106361 |
| 28 |
Liu D, Zhong Z, Karin M. NF-κB: a double-edged sword controlling inflammation[J]. Biomedicines, 2022, 10 (6): 1250.
doi: 10.3390/biomedicines10061250 |
| 29 |
Liao H, Chang X, Gao L, et al. IL-17A promotes tumorigenesis and upregulates PD-L1 expression in non-small cell lung cancer[J]. J Transl Med, 2023, 21 (1): 828.
doi: 10.1186/s12967-023-04365-3 |
| 30 |
Mohammadi B, Saghafi M, Khorasani AM, et al. Different levels of MUC5AC and MUC5B genes expression in severe allergic versus non-allergic asthma[J]. Life Res, 2022, 5 (4): 26.
doi: 10.53388/2022-0515-501 |
| 31 |
程慧雯, 袁文清, 魏水清, 等. miRNA-133b激活剂对过敏性鼻炎-哮喘综合征小鼠气道炎症的影响[J]. 青岛大学学报(医学版), 2022, 58 (5): 733- 738.
doi: 10.11712/jms.2096-5532.2022.58.123 |
| 32 |
Kudo M, Melton AC, Chen C, et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction[J]. Nat Med, 2012, 18 (4): 547- 554.
doi: 10.1038/nm.2684 |
| 33 |
Song JL, Qian B, Pan C, et al. Protective activity of mogroside V against ovalbumin‐induced experimental allergic asthma in Kunming mice[J]. J Food Biochem, 2019, 43 (9): e12973.
doi: 10.1111/jfbc.12973 |
| 34 |
Machado TR, Machado TR, Pascutti PG. The p38 MAPK inhibitors and their role in inflammatory diseases[J]. ChemistrySelect, 2021, 6 (23): 5729- 5742.
doi: 10.1002/slct.202100406 |
| 35 |
Saleem S. Targeting MAPK signaling: a promising approach for treating inflammatory lung disease[J]. Pathol Res Pract, 2024, 254, 155122.
doi: 10.1016/j.prp.2024.155122 |
| 36 |
Wang G, Pang Z, Hsu ACY, et al. Combined treatment with SB203580 and dexamethasone suppresses non-typeable Haemophilus influenzae-induced Th17 inflammation response in murine allergic asthma[J]. Eur J Pharmacol, 2019, 862, 172623.
doi: 10.1016/j.ejphar.2019.172623 |
| 37 |
彭小芝, 马朝芝, 夏雨, 等. 毛喉鞘蕊花提取物对大鼠哮喘模型炎症介质的影响及机制研究[J]. 天然产物研究与开发, 2019, 31 (9): 1515- 1519.
doi: 10.16333/j.1001-6880.2019.9.005 |
| 38 |
Ferreira LKDP, Ferreira LAMP, Barros GCB, et al. MHTP, a synthetic alkaloid, attenuates combined allergic rhinitis and asthma syndrome through downregulation of the p38/ERK1/2 MAPK signaling pathway in mice[J]. Int Immunopharmacol, 2021, 96, 107590.
doi: 10.1016/j.intimp.2021.107590 |
| 39 |
Tota M, Łacwik J, Laska J, et al. The role of eosinophil-derived neurotoxin and vascular endothelial growth factor in the pathogenesis of eosinophilic asthma[J]. Cells, 2023, 12 (9): 1326.
doi: 10.3390/cells12091326 |
| 40 |
阿依妮葛尔·麦麦提艾力, 阿布里米提·阿不列里木, 窦勤, 等. 基于TGF-β1/Smad2/3信号通路探讨茴香胶囊抗支气管哮喘作用及机制[J]. 中南药学, 2024, 22 (8): 2025- 2032.
doi: 10.7539/j.issn.1672-2981.2024.08.010 |
| 41 |
Razaghian A, Parvaneh N, Amirzargar AA, et al. Tumor necrosis factor-α (-308G> A) gene polymorphism and its association with asthma and atopy status[J]. Iran J Allergy Asthma Immunol, 2023, 22 (4): 337- 344.
doi: 10.18502/ijaai.v22i4.13606 |
| 42 |
Sgambellone S, Marri S, Catarinicchia S, et al. Adenosine A3 receptor (A3AR) agonist for the treatment of bleomycin-induced lung fibrosis in mice[J]. Int J Mol Sci, 2022, 23 (21): 13300.
doi: 10.3390/ijms232113300 |
| 43 |
Chen L, Hou W, Liu F, et al. Blockade of NLRP3/Caspase-1/IL-1β regulated Th17/Treg immune imbalance and attenuated the neutrophilic airway inflammation in an ovalbumin-induced murine model of asthma[J]. J Immunol Res, 2022, 2022 (1): 9444227.
doi: 10.1155/2022/9444227 |
| 44 |
陈凌, 茅松, 朱若尘, 等. NLRP3抑制剂MCC950对中性粒细胞性哮喘气道炎症的影响及其作用机制[J]. 中国生物制品学杂志, 2022, 35 (7): 829- 835.
doi: 10.13200/j.cnki.cjb.003652 |
| 45 |
Song M, Liang J, Wang L, et al. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment[J]. Int Immunopharmacol, 2023, 123, 110757.
doi: 10.1016/j.intimp.2023.110757 |
| 46 |
Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti–IL-17 receptor monoclonal antibody, in moderate to severe asthma[J]. Am J Respir Crit Care Med, 2013, 188 (11): 1294- 1302.
doi: 10.1164/rccm.201212-2318OC |
| 47 |
Vicovan AG, Petrescu DC, Constantinescu D, et al. Experimental insights on the use of Secukinumab and Magnolol in acute respiratory diseases in mice[J]. Biomedicines, 2024, 12 (7): 1538.
doi: 10.3390/biomedicines12071538 |
| 48 |
Berry SPDG, Dossou C, Kashif A, et al. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases[J]. Int Immunopharmacol, 2022, 102, 108402.
doi: 10.1016/j.intimp.2021.108402 |
| 49 |
Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives[J]. Front Immunol, 2023, 14, 1207641.
doi: 10.3389/fimmu.2023.1207641 |
| 50 |
Duchesne M, Okoye I, Lacy P. Epithelial cell alarmin cytokines: Frontline mediators of the asthma inflammatory response[J]. Front Immunol, 2022, 13, 975914.
doi: 10.3389/fimmu.2022.975914 |
| 51 |
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316 (5): L843- L868.
doi: 10.1152/ajplung.00416.2018 |
| [1] | HAN Chao, YANG Liu, ZHANG Qiuling, PAN Jinqiang, XU Jun. Effect of baicalin on airway remodeling of bronchial asthma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(7): 749-754. |
| [2] | YAN Gui-ming, WANG Chang-zhong, ZHANG Chuan-ying, LI Yue-yue, ZHOU Xue-chun. Experimental study on interventional effect of paeonol on airway remodeling in COPD rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2015, 20(5): 499-504. |
| [3] | ZHENG Mei-mei, WANG Fang-jian, YUE Tie-gang, DONG Li-yan, DUAN Cheng-cheng. Effects of azithromycin on lung function and serum CTGF of asthma patients [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2013, 18(2): 194-197. |
| [4] | SONG Ze-qing, ZHU Yan-fen, YAO Wei-min, WANG Hui. Effects of astragalus polysaccharide on airway remodelling in the asthma modle of mouse [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2010, 15(4): 385-390. |
| [5] | ZHENG Yang-ming, LI Chang-chong, Zhang Wei-xi, GUAN Xiao-jun. Expression of phospho-p38MAPK in asthmatic rats with airway remodeling the effect on proliferation of mucous cells and the regulation of budesonide [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2009, 14(8): 866-871. |
| [6] | LIN Jie, DAI Yuan-rong, ZHAO Chu-huan, WENG Hai-xia, XIA Xiao-dong, HE Jian-bo. Effects of roxithromycin on myofibroblast, TGF-β1 and IFN-γin rats asthma airway remodeling [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2008, 13(10): 1116-1121. |
| [7] | ZHANG Wei, LIN Yong. Effect of tranilast on airway remodeling of experimental COPD rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2006, 11(11): 1239-1242. |
| [8] | XIE Wei-ping, DING Jian-hua, WANG Hong, Xu Qi, WANG Hai, HU Gang. Effects of novel KATPCO iptakalim on airway hyperresponsiveness and remodeling in guinea-pigs with asthma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2005, 10(2): 128-132. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||