Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2008, Vol. 13 ›› Issue (12): 1434-1440.
QIN Wen-jie, ZHOU Hong-hao
Received:
2008-11-21
Revised:
2008-12-19
Published:
2020-10-30
CLC Number:
QIN Wen-jie, ZHOU Hong-hao. Advances in study of CYP2B6 gene polymorphisms and its functional significances[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2008, 13(12): 1434-1440.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2008/V13/I12/1434
[1] Lewis DF.57 varieties:the human cytochromes P450[J]. Pharmacogenomics, 2004, 5(3):305-318. [2] Rendic S.Summary of information on human CYP enzymes: human P450 metabolism data [J].Drug Metab Rev, 2002, 34(1/2):83-448. [3] Hesse LM, He P, Krishnaswamy S, et al.Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes[J].Pharmacogenetics, 2004, 14(4):225-238. [4] Lang T, Klein K, Fischer J, et al.Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver[J].Pharmacogenetics, 2001, 11(5):399-415. [5] Lamba V, Lamba J, Yasuda K, et al.Hepatic CYP2B6 expression:gender and ethnic differences and relationship to CYP2B6 genotype and CAR(constitutive androstane receptor) expression[J].J Pharmacol Exp Ther, 2003, 307(3):906-922. [6] Guan S, Huang M, Li X, et al.Intra-and inter-ethnic differences in the allele frequencies of cytochrome P450 2B6 gene in Chinese[J].Pharm Res, 2006, 23(9):1983-1990. [7] Hiratsuka M, Takekuma Y, Endo N, et al.Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population[J].Eur J Clin Pharmacol, 2002, 58(6): 417-421. [8] Mehlotra RK, ZiatsMN, Bockarie MJ, et al.Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea[J].Eur J Clin Pharmacol, 2006, 62(4):267-275. [9] Lang T, Klein K, Richter T, et al.Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles[J].J Pharmacol Exp Ther, 2004, 311(1):34-43. [10] Wang J, Sonnerborg A, Rane A, et al.Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz[J].Pharmacogenet Genomics, 2006, 16(3):191-198. [11] Klein K, Lang T, Saussele T, et al.Genetic variability of CYP2B6 in populations of African and Asian origin:allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz[J].Pharmacogenet Genomics, 2005, 15(12):861-873. [12] Mehlotra RK, Bockarie MJ, Zimmerman PA.CYP2B6 983T >C polymorphism is prevalent inWest Africa but absent in Papua New Guinea:implications for HIV AIDS treatment[J].Br J Clin Pharmacol, 2007, 64(3):391-395. [13] Hiratsuka M, Hinai Y, Konno Y, et al.Three novel single nucleotide polymorphisms (SNPs)of the CYP2B6 gene in Japanese individuals[J].Drug Metab Pharmacokinet, 2004, 19(2):155-158. [14] Gatanaga H, Hayashida T, Tsuchiya K, et al.Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6*6 and*26[J].Clin Infect Dis, 2007, 45(9):1230-1237. [15] Rotger M, Tegude H, Colombo S, et al.Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals[J].Clin Pharmacol Ther, 2007, 81(4):557-566. [16] Zukunft J, Lang T, Richter T, et al.A natural CYP2B6 TATA box polymorphism (-82T--> C) leading to enhanced transcription and relocation of the transcriptional start site[J].Mol Pharmacol, 2005, 67(5):1772-1782. [17] Nakajima M, Komagata S, Fujiki Y, et al.Genetic polymorphisms of CYP2B6 affect the pharmacokinetics pharmacodynamics of cyclophosphamide in Japanese cancer patients[J].Pharmacogenet Genomics, 2007, 17(6):431-445. [18] Csajka C, Marzolini C, Fattinger K, et al.Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection[J].Clin Pharma-col Ther, 2003, 73(1):20-30. [19] Marzolini C TA, Decosterd LA, Greub G, et al.Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients[J]. AIDS, 2001, 15(1):71-75. [20] Ward BA GJ, Jones DR, Hall SD, et al.The cytochrome P450 2B6 (CYP2B6)is the main cataly st of efavirenz primary and secondary metabolism:implication for HIV AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity [J].J Pharmacol Exp Ther, 2003, 306(1):287-300. [21] Rotger M, Colombo S, Furrer H, et al.Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIVinfected patients[J].Pharmacogenet Genomics, 2005, 15(1):1-5. [22] Saitoh A, Fletcher CV, Brundage R, et al.Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism[J].J Acquir Immune Defic Syndr, 2007, 45(3):280-285. [23] Nyakutira C, Roshammar D, Chigutsa E, et al.High prevalence of the CYP2B6 516G-->T(*6)variant and effect on the population pharmacokinetics of efavirenz in HIV AIDS outpatients in Zimbabwe [J].Eur J Clin Pharmacol, 2008, 64(4):357-365. [24] Stephanie R, Edward L, Stacy S, et al.Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity[J].Drug Metab Dispos, 2000, 28(10):1222-1230. [25] Kirchheiner J, Klein C, Meineke I, et al.Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6[J].Pharmacogenetics, 2003, 13(10):619-626. [26] Yamazaki H, Inoue K, Hashimoto M, et al.Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes[J].Arch Toxicol, 1999, 73(2):65-70. [27] Johnstone E, Benowitz N, Cargill A, et al.Determinants of the rate of nicotine metabolism and effects on smoking behavior[J].Clin Pharmacol Ther, 2006, 80(4):319-330. [28] Lee AM, Jepson C, Shields PG, et al.CYP2B6 genotype does not alter nicotine metabolism, plasma levels, or abstinence with nicotine replacement therapy [J].Cancer Epidemiol Biomarkers Prev, 2007, 16(6):1312-1314. [29] Ring HZ, Valdes AM, Nishita DM, et al.Gene-gene interactions between CYP2B6 and CYP2A6 in nicotine metabolism[J].Pharmacogenet Genomics, 2007, 17(12): 1007-1015. [30] Lee AM, Jepson C, Hoffmann E, et al.CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial[J].Biol Psychiatry, 2007, 62(6):635-641. [31] Roy P, Tretyakov O, Wright J, et al.Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6.Favorable metabolic properties of R-enantiomer [J].Drug Metab Dispos, 1999, 27(11):1309-1318. [32] Huang Z, Roy P, Waxman DJ.Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide[J].Biochem Pharmacol, 2000, 59(8):961-972. [33] De Jonge ME HA, Rodenhuis S, Beijnen JH.Clinical pharmacokinetics of cyclophosphamide[J].Clin Pharmacokinet, 2005, 44(11):1135-1164. [34] Xie H, Griskevicius L, Stahle L, et al.Pharmacogenetics of cyclophosphamide in patients with hematological malignancies[J].Eur J Pharm Sci, 2006, 27(1):54-61. [35] Takada K, Arefayene M, Desta Z, et al.Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cy clophosphamide in lupus nephritis [J].Arthritis Rheum, 2004, 50(7):2202-2210. [36] Crettol S, Deglon JJ, Besson J, et al.Methadone enantiomer plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment[J].Clin Pharmacol Ther, 2005, 78(6):593-604. [37] Kharasch ED, Hoffer C, Whittington D, et al.Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone [J].Clin Pharmacol Ther, 2004, 76(3):250-269. [38] Eap CB, Crettol S, Rougier JS, et al.Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers[J].Clin Pharmacol Ther, 2007, 81(5):719-728. |
[1] | LI Qinghua, ZHAO Yan, ZHAO Haigang, GAO Pengfei, XU Bingxin. Value of ABCB1 G2677T gene polymorphism detection in lipid-lowering therapy with atorvastatin in patients suffered from ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(6): 633-640. |
[2] | ZHU Li, WEI Bing, LIAO Shi'e, ZHANG Chao, ZHENG Xiaoyu, LIU Yajun. Effects of single nucleotide polymorphism of drug metabolizing enzyme cytochrome P450 on the efficacy of inhaled cortisol hormone in asthmatic children [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 536-543. |
[3] | ZHANG Zhiying, JIN Xiuhong, ZHANG Xiaoning, ZHANG Xiangfeng, LUO Qinglin, ZHANG Songlin. Clinical study of TBX21 and ADCY9 polymorphisms in the develop- ment of childhood asthma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 407-412. |
[4] | FU Hong, TIAN Lei. Individualized precision therapy for patients with ischemic stroke and hypertension [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 870-876. |
[5] | CHEN Wengang, YIN Qin, ZHANG Weiwei, ZHOU Lulu, KOU Wanqing, YUAN Xiaolong. Distributions of MTHFR gene polymorphism and its correlation with blood Hcy in patients with hypertension in southern Anhui province [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 768-774. |
[6] | WU Yuanzhu, LIU Jun, YANG Kui, PENG Jing, LUAN Jiajie, WEI Jun, ZHANG Dafa, SONG Shuai, YUAN Xiaolong, WANG Zhongfang, ZHANG Nianbao, XIE Dan, JIANG Peng, FAN Jie. Distribution of CYP2C9*3 and VKORC1-1639G>A gene polymorphism in Anhui Han population and their influence on the stable dose of warfarin [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 652-659. |
[7] | ZHANG Yuanjin, HUANG Shengbo, LIU Jie, WANG Xin. Construction and application of innovation gene-edited rats and intestinal 3D organoids models in drug metabolism and pharmacokinetics [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(8): 914-922. |
[8] | WANG Chunling, ZHOU Renjing, FENG Rui, WU Yanneng. Effect of adiponectin 45 T/G gene polymorphism on type 2 diabetes treated with liraglutide [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(3): 312-317. |
[9] | LI Jing, Ma Lijuan, YUAN Yuan, WANG Jie, YU Changzhi, ZHAO Jun. Relationship between gene polymorphism of inhaled glucocorticosteroids budesonide and efficacy in asthma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(11): 1250-1258. |
[10] | YANG Chunyan, ZHANG Wen, WANG Peipei, PENG Jing, JIANG Jia, SONG Jing, LIU Jun, LI Yueran, YANG Kui, WANG Sheng, XU Zhenyu, LUAN Jiajie. Distribution of gene polymorphism in folate metabolism pathway and its effect on serumhomocysteine concentration [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(11): 1259-1264. |
[11] | . Research Progress of Pharmacogenomics of Dabigatran Etexilate and Rivaroxaban [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(10): 1200-1207. |
[12] | WANG Fengling, MENG Xiangyun, CHEN Zhengxu, CAO Rongjuan, HE Zhengmin, YE Xi, WANG Cong, LI Qi. Analysis on genetic polymorphism of SLCO1B1 and ApoE in patients with cardiovascular diseases of Han nationality in Anhui area and its clinical significance for individualized use of statins [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(1): 40-48. |
[13] | XU Honglei, XU Bingxin, ZU Qing, ZHAO Yan, GAO Pengfei, YU Yang. Effects of CYP2C19 gene polymorphism on the clinical prognosis of clopidogrel in elderly patients with acute cerebral infarction [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(9): 1014-1020. |
[14] | PENG Jing, LIU Jun, XU Huifang, LI Yueran, JIANG Jia, WANG Sheng, ZHOU Dexi, ZHU Yanhong, YANG Kui, LUAN Jiajie. Correlation study between cytochrome P4502C19 gene polymorphism or metabolic type and ADP induced-platelet aggregation inhibition and clopidogrel resistance [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(7): 746-751. |
[15] | TANG Mufei, SHEN Yunzhu, ZHANG Baoguo. Influence of CYP2D6 gene polymorphism on the effect of tropisetron in preventing chemotherapy induced nausea and vomiting [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(7): 817-822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||