Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2009, Vol. 14 ›› Issue (9): 1068-1073.
Previous Articles Next Articles
WANG Shuai, CHU Liang, HU Xiao-wei, YAO Ji-hong
Received:
2009-05-25
Revised:
2009-09-16
Published:
2020-11-03
CLC Number:
WANG Shuai, CHU Liang, HU Xiao-wei, YAO Ji-hong. Study between related factors of hepatocellular carcinoma and ubiquitin proteasome pathway[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2009, 14(9): 1068-1073.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2009/V14/I9/1068
[1] Perz JF, Amstrong GL, Farrington LA, et al.The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide[J]. Hepatology, 2006, 45(4): 529-538. [2] Lindsten K, Dantuma NP.Monitoring the ubiquitin-proteasome system in conformational diseases[J]. Ageing Res Rev, 2003, 2(4): 433-449. [3] 倪晓光, 赵平. 泛素-蛋白酶体途径的组成和功能[J]. 生理科学进展, 2006, 37(3): 255-258. [4] Admanabhan B, Adachi N, Kataoka K, et al. Crystals-tructure of the homolog of the on copro tein gankyrin, an interactor of Rb and CDK4/6[J]. Biol Chem, 2004, 279(2): 1546-1552. [5] Rezvani K, Mee M, Dawson S, et al.Proteasomal interactors control activeties as diverse as the cell cycle and glutaminergic neurotransmission[J]. Biochem Soc Trans, 2003, 31(2): 470-473. [6] Tan L, Fu XY, Liu SQ, et al.Expression of p28 GANK and it s correlation with RB in human hepatocellular carcinoma[J]. Liver Int, 2005, 25(3): 667-676. [7] Li J, Tsai MD.Novel insights into the INK4-CDK4 6-Rb pathway ;counter action of gankyrin against INK4 proteins regulates the CDK4-mediated phosphorylation of Rb[J]. Biochemistry, 2002, 41(12): 3977-3983. [8] Higashitsuji H, Liu Y, Mayer RJ, et al.The oncoprotein Gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation[J]. Cell Cycle, 2005, 4(10): 1335-1337. [9] Higashitsuji H, Itoh K, Sakurai T, et al.The oncoprotein Gankyrin binds to MDM2 HDM2, enhancing ubiquitylation and degradation of p53[J]. Cancer Cell, 2005, 8(1): 75-87. [10] Chen Y, Li HH, Fu J, et al. Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export[J]. Cell Res, 2007, 17(12): 1020-1029. [11] Zhang Z, Torii N, Furusaka A, et al.Structural and functional characterization of inter/action between hepatitis B virus X protein and the proteasome complex[J]. Biol Chem, 2000, 275(20): 15157-15165. [12] Jung JK, Kwun HJ, Lee JO, et al.Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of beta-catenin depending on the status of cellular p53[J]. Gen Virol, 2007, 88(8): 2144-2154. [13] Rost M, Mann S, Lambert C, et al.Gamma-adaptin, a novel ubiquitin-interacting adaptor, and Nedd4 ubiquitin ligase control hepatitis B virus maturation[J]. Biol Chem, 2006, 281(39): 29297-29308. [14] Liu H, Ye L, Wang QW, et al.Effect of a conserved peptide derived from Kunitz domain of hepatitis B virus x protein on the cell cycle and apoptosis of HepG2 cells via the proteasome pathway[J]. Chin Med J, 2009, 122(4): 460-465. [15] Munakata T, Liang Y, Kim S, et al.Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein[J]. PLoS Pathog, 2007, 3(9): 1335-1347. [16] Suzuki R, Tamura K, Li J, et al.Ubiquitin-mediated degradation of hepatitis C virus core protein is regulated by processing at its carboxyl terminus[J]. Virology, 2001, 280(2): 301-309. [17] Gao L, Tu H, Shi ST, et al. Interaction with a ubiquitinlike protein enhances the ubiquit ination and degradation of hepatitis C virus RNA-dependent RNA polymerase[J]. Virol, 2003, 77(7): 4149-4159. [18] Brauckhoff A, Ehemann V, Schirmacher P, et al.Reduced expression of the E3ubiquitin ligase seven in absentia homologue (SIAH)-1 in human hepatocellular carcinoma[J]. Verh Dtsch Ges Pathol, 2007, 9(1): 269-277. [19] Rahman MA, Kyriazanos ID, Ono T, et al.Impact of PTEN expression on the outcome of hepatitis C virus positive cirrhotic hepatocellular carcinoma patients:possible relationship with COXII and inducible nitric oxide synthase[J]. Int J of Cancer, 2002, 100(2): 152-157. [20] Wang X, Trotman LC, Koppie T, et al. NEDD4-1 is a protooncogenic ubiquitin ligase for PTEN[J]. Cell, 2007, 128(1): 129-139. [21] Shen WH, Balajee AS, Wang J, et al.Essential role for nuclear PTEN in maintaining chromosomal integrity[J]. Cell, 2007, 28(1): 157-170. [22] Trotman LC, Wang X, Alimonti A, et al.Ubiquitination regulates PTEN nuclear import and tumor suppression[J]. Cell, 2007, 128(1): 141-156. [23] Nelsen CJ, Hansen LK, Rickheimd G, et al. Induction of hepatocyte proliferation and liver hyperplasia by the targeted expression of cyclin E and skp2[J]. Oncogene, 2001, 20(15): 1825-1831. [24] Traub F, Mengel M, Luck HJ, et al.Prognostic impact of Skp2 and p27 in human breast cancer[J]. Breast Cancer Res Treat, 2006, 99(2): 185-191. [25] 王燮, 王琨, 申丽娟, 等.肝癌发生过程中泛素-蛋白酶体途径介导P27蛋白的低表达机制初探[J]. 昆明医学院学报, 2009(1): 1-5. [26] Hara T, Kamura T, Nakayama K, et al. Degradation of p27(Kipl) at the G(0)-G (1) transition mediated by a Skp2-independent ubiquitination pathway[J]. Biol Chem, 2001, 276(52): 48937-48943. [27] Zhu GJ, Li SJ, Hu ZJ, et al.DATS inhibited LPS-induced proinflammatory cytokines expression in mouse alveolar macrophages cell lineMH-S by inhibiting NF-κB activation[J]. Chin Pharmacol Bull, 2007, 23(12): 1580-1584. [28] Viatour P, Merville MP, Bours V, et al.Phosphorylation of NF-kappa B and I kappa B proteins: implications in cancer and inflammation[J]. Trends Biochem Sci, 2005, 30(1): 43-52. [29] Bonizzi G, KarinM.The two NF-kappa B activation pathways and their role in innate and adaptive immunity[J]. Trends Immunol, 2004, 25(6): 280-288. [30] Chen G, Goeddel DV.TNF-R1signaling: a beautiful pathway[J]. Science, 2002, 296(5573): 1634-1635. [31] Chen ZJ. Ubiquitin signalling in the NF-κB pathway[J]. Nat Cell Biol, 2005, 7(8): 758-765. [32] Van Luu C, Van Chau M, Lee J, et al.Exploration of essential structure of mall oapelta B for the inhibitory activity against TNF induced NF-kappa B activation[J]. Arch Pharm Res, 2006, 29(10): 840-844. [33] Arsura M, Cavin LG.Nucler factor kappa B and liver carcinogenesis[J]. Cancer Lett, 2005, 229(2): 157-169. [34] Chiao PJ, Na R, Niu J, et al.Role of Rel/NF-kappa B transcription factors in apoptosis of human hepatocellular carcinoma cells[J]. Cancer, 2002, 95(8): 1696-1705. [35] Hegewisch Becker S, Sterneck M, Schubert U, et al.PhasⅠ/Ⅱ trial of bortezomib in patients with unresectable hepatocellular carcinoma (HCC)[J]. Pro Am Soc Clin Oncol, 2004, 4089. [36] Jentsch S, Pyrowolakis G.Ubiquitin and its skin:how close are the family ties[J]. Trends Cell Biol, 2000, 10(8): 335-342. [37] Hipp MS, Kalveram B, Raasi S, et al. FAT10, a ubiquitin- independent signal for protea somal degradation[J]. Mol Cell Biol, 2005, 25(9): 3483-3491. [38] Lee CG, Ren J, Cheong IS, et al.Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers[J]. Oncogene, 2003, 22(17): 2592-2603. [39] Lukasiak S, Schiller C, Oehlschlaeger P, et al.Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon[J]. Oncogene, 2008, 27(46): 6068-6074. [40] Oliva J, Bardag-Gorce F, French BA, et al. FAT10 is an epigenetic marker for liver preneo plasia in a drug-primed mouse model of tumorigenesis[J]. ExpMol Pathol, 2008, 84(2): 102-112. [41] Liu YC, Pan J, Zhang C, et al. A MHC-encoded ubiquitin- like protein(FAT10) binds noncova lently to the spindle assembly checkpoint protein MAD2[J]. Proc Natl Acad Sci USA, 1999, 96(8): 4313-4318. [42] Wang X, Jin DY, Wong YC, et al. Correlation of defective mitotic checkpoint with aberrantly reduced expression of MAD2 protein in nasopharyngeal carcinoma cells[J]. Carcinogenesis, 2000, 21(12): 2293-2297. [43] Zhang DW, Jeang KT, Lee CG.p53 negatively regulates the expression of FAT10, a gene upregulated in various cancers[J]. Oncogene, 2006, 25(16): 2318-2327. [44] Shirahashi H, Sakaida I, Terai S, et al. Ubiquitin is a possible new predictive marker for the recurrence of human hepatocellular carcinoma[J]. Liver, 2002, 22(5): 413-418. [45] 唐大年, 韦军民, 朱明炜, 等. 阻断泛素-蛋白酶体通路与人肝癌细胞药物敏感性关系的实验研究[J]. 中华肝胆外科杂志, 2006, 12(9): 634-636. |
[1] | WU Xianchuang, LIU Yuxin, NIU Yuji, HE Jinjin, QIAO Hui, ZHANG Leilei. Mechanism of DCLK1 transcriptional regulation in HCC [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1241-1246. |
[2] | YE Kaili, ZHENG Wen, YE Qifa, YANG Lan . Mechanism of CDK1 participates in the development of hepatocellular carcinoma and its inhibitor application value [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(9): 1086-1094. |
[3] | YU Saihong, ZHENG Xiaoliang, PU Yiyi, YAN Dongmei, WANG Xiaoju, YU Jie. Reversal of 5-fluorouracil resistance in hepatocellular carcinoma cells by inhibiting ribonucleotide reductase M2 [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(7): 729-737. |
[4] | SONG Ruzheng, PENG Ying, WANG Guangji, SUN Jianguo. Commonly used quantitative proteomics research techniques and their application in the study of pathogenesis of liver-derived diseases [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(5): 570-578. |
[5] | HUANG Kang, LI Ling, YE Qifa, PENG Guizhu. Expression of long non-coding RNA LINC00844 in hepatocellular carcinoma and its inhibiting effect on cell proliferation and migration [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(4): 366-372. |
[6] | CHANG Qingqing, PENG Ying, WANG Guangji, SUN Jianguo. Clinical research progress of small molecule tyrosine kinase inhibitors as anti-hepatocellular carcinoma agents [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(8): 948-956. |
[7] | YANG Shucai,ZHANG Li,LIU Liping,DENG Weijie,ZHOU Jie,LIU Hui,ZHANG Baohu,JIN Tao. Effect of hypoxia-inducible factor 2α on chemoresistance of hepatocellular carcinoma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(6): 630-636. |
[8] | SUN Kaikai, HUANG Chunhong, WANG Yunyun, WU Wei, CHEN Zhi. Detection of T lymphocyte surface costimulatory molecules and T lymphocyte subsets in peripheral blood of HBV infected patients and its clinical significance [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(3): 241-247. |
[9] | TIAN Jing, MENG Qiuhua, LIANG Qiuyun, DONG Min. Research progress in the associations of metabolic diseases and therapeutic drugs with hepatocellular carcinomas [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(1): 103-110. |
[10] | YUAN Gang, HU Airong, HU Yaoren, ZENG Chuanli, ZHU Dedong, SHI Xiaojun. Clinical efficacy and long-term prognosis of entecavir and adefovir dipivoxil in the treatment of compensatory hepatitis B cirrhosis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2018, 23(2): 170-174. |
[11] | CAI Min, XU Liu, SHEN Lan, ZHANG Jie. Expression of long-chain non-coding RNA FOXN3-AS2 in hepatocellular carcinoma and its effect on proliferation and invasion of hepatoma cells [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2018, 23(11): 1246-1251. |
[12] | LI Yun, LI Bingsheng, ZHANG Weifang, LI Yixiu, LI Chun, PENG Juan, LAI Xin, ZHU Jing, XU Ruilai, XIONG Aizhen. Association study of miR-146a G>C polymorphisms with susceptibility of hepatocellular carcinoma in the Chinese population: a Meta-analysis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(7): 779-786. |
[13] | ZHANG Ying, ZHOU Yuanfeng, HU Min. Research progress of traditional Chinese medicine for the invasion and metastasis of hepatocellular carcinoma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(5): 594-600. |
[14] | WANG Meng, HUANG Can, YANG Cui, XIA Quan , XU Du-juan. Adjusting autophagy to augment sensitivity of 5-FU in Bel-7402/FU cells [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(5): 488-492. |
[15] | SUN De-cong, CHEN Li, WU Zhi-yong, DAI Guang-hai. Diagnosis and management of the hepatitis B reactivation in patients receiving cytotoxic chemotherapy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(5): 584-590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||