[1] Zanger UM, Fischer J, Raimundo S, et al. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6[J]. Pharmacogenetics, 2001, 11(7):573-585. [2] Daly AK, Brockmoller J, Broly F, et al. Nomenclature for human CYP2D6 alleles[J]. Pharmaco- genetics, 1996, 6(3): 193-201. [3] 许剑安, 陈伟力, 徐红蓉, 等. 酒石酸美托洛尔片在中国健康人体的药代动力学[J]. 中国临床药理学杂志, 2005, 21(2): 136-139. [4] Otton SV, Crewe HK, Lennard MS, et al. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes[J]. J Pharma- col Exp Ther, 1988, 247(1): 242-247. [5] Johnson JA, Burlew BS. Metoprolol metabolism via cytochrome P4502D6 in ethnic populations[J]. Drug Metab Dispos, 1996, 24(3): 350-355. [6] 付良青, 吴德政. 细胞色素氧化酶P450及其遗传多态性[J]. 中国药理学通报, 2001, 17(1): 21-26. [7] 徐田雪, 杨信怡, 赵昆, 等. 药物代谢酶细胞色素P450 2D6的遗传多态性研究进展[J]. 中国抗生素杂志, 2009, 7(34): 385-391. [8] Gough AC, Smith CA, Howell SM, et al. Localization of the CYP2D gene locus to human chromosome 22q 13.1 by polymerase chain reaction, in situ hybridization, and linkage analysis[J]. Genomics, 1993, 15(2): 430-432. [9] Ingelman-Sundberg M, Sim SC, Gomez A, et al. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects[J]. Pharmacol Ther, 2007, 116(3): 496-526. [10] Kubota T, Yamaura Y, Ohkawa N, et al. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes [J]. Br J Clin Pharmacol, 2000, 50(1): 31-34. [11] Beverage JN, Sissung TM, Sion AM, et al. CYP2D6 polymorphisms and the Impact on tamoxifcn therapy[J]. J Pharm Sci, 2007, 96(9): 2224-2231. [12] Klein K, Tatzei S, Raimundo S, et al. A natural variant of the heme-binding signature(R441C) resulting in complete loss of function of CYP2D6[J]. Drug Metab Dispos, 2007, 35(8): 1247-1250. [13] Raimundo S, Tescano C, Klein K, et al. A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P4502D6 in white subjects[J]. Clin Pharmacol Thr, 2004, 76(2): 128- 138. [14] Andersson T, Flockhart DA, Goldstein DB, et al. Drug-metabolizing enzymes: evidence for clinical utility of pharmacogenomic tests[J]. Clin Pharmacol Ther, 2005, 78(6): 559-581. [15] Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin [J]. Clin Pharmacol Ther, 1992, 51(4): 388-397. [16] Alvan G, Bechtel P, Iselius L, et al. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations[J]. Eur J Clin Pharmacol, 1990, 39(6): 533-537. [17] Afshar M, Rouini M, Ala S. Dextromethorphan metabolic phenotyping in an Iranian population[J]. Eur J Clin Pharmacol, 2005, 60(12): 849-854. [18] Aklillu E, Persson I, Bertilsson L, et al. Frequent distribution of ultrarapid metabolizers of debriso- quine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles[J]. J Pharmacol Exp Ther, 1996, 278(1): 441-446. [19] Sohn DR, Shin SG, Park CW, et al. Metoprolol oxidation polymorphism in a Korean population: comparison with native Japanese and Chinese populations[J]. Br J Clin Pharmacol, 1991, 32(4): 504-507. [20] Lou YC, Ying L, Bertilsson L, et al. Low frequency of low debrisoquine hydroxylation in a native Chinese population[J]. Lancet, 1987, 2(8563): 852-853. [21] Shimizu T, Ochiai H, Asell F, et al. Bioinformatics research on inter-racial difference in drug metabolism II. Analysis on relationship between enzyme activities of CYP2D6 and CYP2C19 and their relevant genotypes[J]. Drug Metab Pharmacokinet, 2003, 18(4): 48-70. [22] Fukuda T, Nishida Y, Lmaoka S, et al. The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression but also by low affinity of CYP2D6[J]. Arch Biochem Biophys, 2000, 380(2): 303-308. [23] Yu A, Kneller BM, Rettie AE, et al. Expression, purification, biochenfieal characterization, and comparative fnnction of human cytochrome P450 2D6*1,2D6*2,2D6*10 and 2D6*17 allelic isoforms[J]. J Pharmacol Exp Ther, 2002, 303(3): 1291-1300. [24] 刘洁, 刘昭前, 刘英姿. β1肾上腺素受体与CYP2D6基因多态性对美托洛尔抗高血压治疗的药代动力学和药效学影响[J]. 中国临床药理学与治疗学, 2007, 12(10): 1130-1137. [25] 张毕奎, 原海燕, 郭军平, 等. 酒石酸美托洛尔片相对生物利用度及药动学和药效学[J]. 中国医院药学杂志, 2001, 21(10): 589-592. [26] 李芹, 王睿, 郭雅, 等. 中国人群CYP2D6基因多态性对美托洛尔抗高血压治疗的药代动力学和药效学影响[J]. 中国临床药理学与治疗学, 2007, 12(10): 1130-1137. [27] Borg KO, Carlsson E, Hoffmann KJ, et al. Metabolism of metoprolol-(3H) in man, the dog and the rat[J]. Acta Pharmacol Toxicol, 1975, 36(5):116-124. [28] Belpaire FM, Wijnant P, Temmerman A, et al. The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors [J]. Eur J Clin Pharmacol, 1998, 54(3): 261-264. [29] Johansson I, Oscarson M, Yue QY, et al. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydmxylation[J]. Mol Pharmacol, 1994, 46(3): 452-459. [30] 王娜, 刘会臣, 侯艳宁. 细胞色素P450 2D6与药物代谢[J]. 中国临床药理学杂志, 2001, 17(4): 312 -308. [31] Wang Y, Zhou L, Dutreix C, et al. Effects of imatinib(Glivec) on the pharmaeokineties of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia[J]. Br J Clin Pharmaeol, 2008, 65(6): 885-892. |