Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2014, Vol. 19 ›› Issue (9): 1042-1049.
Previous Articles Next Articles
ZHANG Yue-li1, MING Ying-zi2, ZHOU Hong-hao1, ZHANG Wei1
Received:
2013-10-16
Revised:
2014-07-23
Online:
2014-09-26
Published:
2014-09-26
CLC Number:
ZHANG Yue-li, MING Ying-zi, ZHOU Hong-hao, ZHANG Wei. Tacrolimus pathways:pharmacokinetics,pharmacodynamics and pharmacogenomics[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(9): 1042-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2014/V19/I9/1042
[1] | Kapturczak MH, Meier-Kriesche HU, Kaplan B.Pharmacology of calcineurin antagonists[J]. Transplant Proc, 2004,36(2): 25-32. |
[2] | Antignac M, Barrou B, Farinotti R,et al.Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients[J]. Br J Clin Pharmacol ,2007, 64(6):750-757. |
[3] | Clardy CW, Schroeder TJ, Myre SA, et al.Clinical variability of cyclosporine pharmacokinetics in adult and pediatric patients after renal, cardiac, hepatic, and bone-marrow transplants[J]. Clin Chem, 1988,34(10): 212-225. |
[4] | Lindholm A.Factors influencing the pharmacokinetics of cyclosporine in man[J]. Ther Drug Monit, 1991, 13(6): 465-477. |
[5] | Akhlaghi F, Trull AK.Distribution of cyclosporin in organ transplant recipients[J]. Clin Pharmacokinet, 2002,41(9): 615-637. |
[6] | Christians U, Strom T, Zhang YL, et al.Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics[J]. Ther Drug Monit, 2006, 28(1): 39-44. |
[7] | Cummins CL, Jacobsen W, Benet LZ.Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4[J]. J Pharmacol Exp Ther, 2002,300(3): 1036-1045. |
[8] | Yokogawa K, Takahashi M, Tamai I, et al.P-glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice[J]. Pharm Res, 1999. 16(8): 1213-1218. |
[9] | Dai Y, Hebert MF, Isoherranen N, et al.Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro[J]. Drug Metab Dispos, 2006,34(5): 836-847. |
[10] | Elens L, Bouamar R, Hesselink DA,et al.A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients[J]. Clin Chem, 2011,57(11): 1574-1583. |
[11] | Gervasini G, Garcia M, Macias RM, et al.Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation[J]. Transpl Int, 2012,25(4): 471-480. |
[12] | Staatz CE, Goodman LK, Tett SE.Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I[J]. Clin Pharmacokinet, 2010, 49(3): 141-175. |
[13] | Wei-lin W, Jing J, Shu-sen Z, et al.Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients[J]. Liver Transpl, 2006,12(5): 775-780. |
[14] | Cummins CL, Jacobsen W, Christians U, et al.CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam[J]. J Pharmacol Exp Ther, 2004,308(1): 143-155. |
[15] | Möller A, Iwasaki K, Kawamura A, et al.The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects[J]. Drug Metab Dispos, 1999,27(6): 633-636. |
[16] | Wallemacq P, Armstrong VW, Brunet M,et al.Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference[J]. Ther Drug Monit, 2009,31(2): 139-152. |
[17] | Garrity ER Jr, Hertz MI, Trulock EP, et al.Suggested guidelines for the use of tacrolimus in lung-transplant recipients[J]. J Heart Lung Transplant, 1999,18(3): 175-186. |
[18] | Morteau O, Blundell S, Chakera A, et al.Renal transplant immunosuppression impairs natural killer cell function in vitro and in vivo[J]. PLoS One, 2010,5(10): 132-144. |
[19] | Macian FC,Garcia-Rodriguez,Rao A.Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun[J]. EMBO J, 2000,19(17): 4783-4795. |
[20] | Jain J, Loh C, Rao A.Transcriptional regulation of the IL-2 gene[J]. Curr Opin Immunol, 1995,7(3): 333-342. |
[21] | Matsuda S, Shibasaki F, Takehana K,et al.Two distinct action mechanisms of immunophilin-ligand complexes for the blockade of T-cell activation[J]. EMBO Rep, 2000,1(5): 428-434. |
[22] | Khanna A, Cairns V, Hosenpud JD.Hosenpud, Tacrolimus induces increased expression of transforming growth factor-beta1 in mammalian lymphoid as well as nonlymphoid cells[J]. Transplantation, 1999, 67(4): 614-619. |
[23] | Minguillón J, Morancho B, Kim SJ,et al.Concentrations of cyclosporin A and FK506 that inhibit IL-2 induction in human T cells do not affect TGF-beta1 biosynthesis, whereas higher doses of cyclosporin A trigger apoptosis and release of preformed TGF-beta1[J]. J Leukoc Biol, 2005, 77(5): 748-758. |
[24] | Naesens M, Kuypers DR, Sarwal M.Calcineurin inhibitor nephrotoxicity[J]. Clin J Am Soc Nephrol, 2009, 4(2): 481-508. |
[25] | Barraclough KA, Isbel NM, Lee KJ, et al.NR1I2 polymorphisms are related to tacrolimus dose-adjusted exposure and BK viremia in adult kidney transplantation[J]. Transplantation, 2012,94(10): 1025-1032. |
[26] | Hubbard PA, Shen AL, Paschke R,et al.NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer[J]. J Biol Chem, 2001,276(31): 163-170. |
[27] | Press RR, Ploeger BA, den Hartigh J, et al.Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients[J]. Ther Drug Monit, 2009,31(2): 187-197. |
[28] | 侯明明, 宋洪涛, 王庆华, 等. 肾移植患者cyp3a5*3基因多态性对他克莫司血药浓度/剂量比和疗效的影响[J]. 中国医院药学杂志, 2010,(04): 313-316. |
[29] | 朱琳, 华之卉,宋洪涛.他克莫司的药物基因组学与个体化用药[J]. 中国临床药理学与治疗学, 2011,16(6): 710-715. |
[30] | Swen JJ, Nijenhuis M, de Boer A, et al., Pharmacogenetics: from bench to byte——an update of guidelines[J]. Clin Pharmacol Ther, 2011,89(5): 662-673. |
[31] | Ji E, Choi L, Suh KS et al.Combinational effect of intestinal and hepatic CYP3A5 genotypes on tacrolimus pharmacokinetics in recipients of living donor liver transplantation[J]. Transplantation, 2012,94(8): 866-872. |
[32] | Muraki Y, Usui M, Isaji S, et al.Impact of CYP3A5 genotype of recipients as well as donors on the tacrolimus pharmacokinetics and infectious complications after living-donor liver transplantation for Japanese adult recipients[J]. Ann Transplant, 2011,16(4): 55-62. |
[33] | Díaz-Molina B, Tavira B, Lambert JL, et al.Effect of CYP3A5, CYP3A4, and ABCB1 genotypes as determinants of tacrolimus dose and clinical outcomes after heart transplantation[J]. Transplant Proc, 2012,44(9): 635-638. |
[34] | Santoro A, Felipe CR, Tedesco-Silva H, et al.Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients[J]. Pharmacogenomics, 2011,12(9): 1293-1303. |
[35] | Shi XJ1, Geng F, Jiao Z, et al.Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis[J]. J Clin Pharm Ther, 2011,36(5): 614-624. |
[36] | Staatz CE, Goodman LK, Tett SE.Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II[J]. Clin Pharmacokinet, 2010,49(4): 207-221. |
[37] | Elens L, van Schaik RH, Panin N, et al., Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients[J]. Pharmacogenomics, 2011,12(10): 1383-1396. |
[38] | de Jonge H, Metalidis C, Naesens M, et al.The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients[J]. Pharmacogenomics, 2011,12(9): 1281-1291. |
[39] | Baan CC, Balk AH, Holweg CT,et al.Renal failure after clinical heart transplantation is associated with the TGF-beta 1 codon 10 gene polymorphism[J]. J Heart Lung Transplant, 2000,19(9): 866-872. |
[40] | Lácha J, Hubácek JA, Viklick O, et al.TGF-beta1 gene polymorphism is a risk factor for renal dysfunction in heart transplant recipients[J]. Transplant Proc, 2001,33(1/2): 1567-1579. |
[41] | van de Wetering J, Weimar CH, Balk AH, et al.The impact of transforming growth factor-beta1 gene polymorphism on end-stage renal failure after heart transplantation[J]. Transplantation, 2006,82(12): 1744-1748. |
[42] | Hesselink DA, van Schaik RH, van der Heiden IP, et al.Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus[J]. Clin Pharmacol Ther, 2003,74(3): 245-254. |
[43] | Bandur S, Petrasek J, Hribova P, et al.Haplotypic structure of ABCB1/MDR1 gene modifies the risk of the acute allograft rejection in renal transplant recipients[J]. Transplantation, 2008,86(9): 1206-1213. |
[44] | 吴萍, 王明丽, 罗光华,等. 多药耐药基因多态性和单倍体对肾移植患者他克莫司血药浓度的影响[J]. 中国临床药理学杂志, 2010,15(9): 643-646. |
[45] | Anglicheau D, Verstuyft C, Laurent-Puig P, et al.Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients[J]. J Am Soc Nephrol, 2003,14(7): 1889-1896. |
[46] | Wang D, Johnson AD, Papp AC, et al.Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability[J]. Pharmacogenet Genomics, 2005,15(10): 693-704. |
[47] | Capron A, Mourad M, De Meyer M, et al.CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation[J]. Pharmacogenomics, 2010,11(5): 703-714. |
[48] | Herrlinger KR, Koc H, Winter S, et al.ABCB1 single-nucleotide polymorphisms determine tacrolimus response in patients with ulcerative colitis[J]. Clin Pharmacol Ther, 2011,89(3): 422-428. |
[49] | Zheng HX, Zeevi A, McCurry K, et al.The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients[J]. Transpl Immunol, 2005,14(1): 37-42. |
[50] | Hebert MF, Dowling AL, Gierwatowski C, et al.Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors[J]. Pharmacogenetics, 2003,13(11): 661-674. |
[51] | Oneda B, Crettol S, Jaquenoud Sirot E, et al.The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test[J]. Pharmacogenet Genomics, 2009, 19(11): 877-883. |
[52] | Klauke B, Wirth A, Zittermann A, et al.No association between single nucleotide polymorphisms and the development of nephrotoxicity after orthotopic heart transplantation[J]. J Heart Lung Transplant, 2008,27(7): 741-745. |
[53] | Lachance K, Barhdadi A, Mongrain I,et al.PRKCB is associated with calcineurin inhibitor-induced renal dysfunction in heart transplant recipients[J]. Pharmacogenet Genomics, 2012,22(5): 336-343. |
[54] | Smith HE, Jones JP 3rd, Kalhorn TF, et al.Role of cytochrome P450 2C8 and 2J2 genotypes in calcineurin inhibitor-induced chronic kidney disease[J]. Pharmacogenet Genomics, 2008,18(11): 943-953. |
[1] | WU Yujie, ZHAO Chengcheng, XI Qing. Evaluation of tegacycline regimens in treatment of gram-negative bacterial infections with Monte Carlo simulation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(9): 1027-1033. |
[2] | LI Kun, LI Lulu, LI Nannan, HU Weihong, ZHOU Jianchao. Effects of glycaemic control and CYP3A5 polymorphisms on tacrolimus trough concentrations after adult kidney transplantation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 767-774. |
[3] | HE Xueru, LI Ying, MA Yinling, FU Yuhao, XUN Xuejiao, DONG Zhanjun. Pharmacokinetic interaction study between sorafenib and dapagliflozin in rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 498-507. |
[4] | HUANG Zhiwei, LI Yi, XU Xiaoyong, ZHANG Lei, SHEN Yifeng, LI Huafang. Comparison of calculation results of five population pharmacokinetic analysis tools [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 525-535. |
[5] | LI Mengxue, HE Jie, YU Xiaxia, HU Linlin, SHAO Hua. Research progress in population pharmacokinetics of rituximab [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 468-474. |
[6] | YAN Qiangyong, XIANG Daxiong, ZHU Ronghua, YANG Lingfeng, YANG Xiding, LI Jingjing, FAN Xiao, LIU Sai, XIONG Shoujun, FANG Pingfei. Bioequivalence study of cinacalcet hydrochloride tablets in healthy Chinese volunteers [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 171-177. |
[7] | LIU Lu, SHI Yufei, HE Qingfeng, XU Fengyan, WANG Kun, CAI Weimin, XIANG Xiaoqiang. Application of population modeling analysis to evaluate the impact of gene polymorphism on drug PK/PD [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1275-1282. |
[8] | ZHOU Jiating, ZHANG Xuan, XIE Zilan, LI Zhi. Interactions and clinical significance of gut microbiota and levothyroxine [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1307-1314. |
[9] | LI Xuejing, JIANG Jinping, LI Sining, WAN Linfei, ZHOU Xiangxiang, YANG Lian, LAN Ke. A bioequivalence study of generic and brand clozapine in schizophrenic patients [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1121-1130. |
[10] | WU Lili, LIANG Zhi, HUANG Siyong, WANG Yan. Effect of augmented renal clearance (ARC) on the pharmacokinetics, efficacy, and safety of vancomycin in patients with infective endocarditis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1139-1145. |
[11] | WANG Shuang, LIU jia, ZHANG Yueli. Associations of POR*28 polymorphisms with tacrolimus stable dose in Chinese kidney transplantation patients [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 991-997. |
[12] | MA Shen, LIU Yushuo, TANG Hui, CHEN Wenbin, GAO Ling. Pharmacokinetics and clinical significance of drugs for improving nonalcoholic fatty liver disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 908-918. |
[13] | DAI Jingyi, WANG Jingjing, ZHANG Jing, YU Jicheng, LI Nanyang, HUANG Zhiwei. Clinical application and research progress of inhaled methoxyflurane [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 808-813. |
[14] | GU Yifei, CHU Nannan, HUANG Kai, QUE Linling, ZHANG Jisheng, XIANG Xuemei, HE Qing. Application and progress of pharmacodynamics study in bioequivalence evaluation of orally inhaled drug products [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 822-833. |
[15] | DU Wenpeng, AO Jiangen, TAO Yi, WU Guansheng, HE Jiake. Study on the factors affecting the steady-state blood concentration of tacrolimus in patients with autoimmune diseases [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 645-651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||