Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2014, Vol. 19 ›› Issue (9): 1064-1068.
Previous Articles Next Articles
LIU Li1, 2, GUO Chen-xian2, PENG Jin-fu1, 2, HUANG Jie2, YANG Guo-ping2
Received:
2013-11-25
Revised:
2014-07-11
Online:
2014-09-26
Published:
2014-09-26
CLC Number:
LIU Li, GUO Chen-xian, PENG Jin-fu, HUANG Jie, YANG Guo-ping. Development of microRNA-dependment control of drug transporter[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(9): 1064-1068.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2014/V19/I9/1064
[1] | 周宏灏,主编.遗传药理学[M]. 北京科学出版社, 2001. |
[2] | Glubb DM, Innocenti F.Mechanisms of genetic regulation in gene expression: examples from drug metabolizing enzymes and transporters[J]. Wiley Interdiscip Rev Syst Biol Med., 2011, 3(3): 299-313. |
[3] | 郭瑜, 周宏灏, 刘昭前. miRNA 与药物反应个体差异[J]. 中国临床药理学与治疗学, 2013, 18(4): 443-448. |
[4] | Bartel DP.MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233. |
[5] | Toscano-Garibay JD, Aquino-Jarquin G.Regulation exerted by miRNAs in the promoter and UTR sequences: MDR1/P-gp expression as a particular case[J]. DNA Cell Biol, 2012, 31(8): 1358-1364. |
[6] | Shukla GC, Singh J, Barik S.MicroRNAs: processing, maturation, target recognition and regulatory functions[J]. Mol Cell Pharmacol, 2011, 3(3): 83. |
[7] | Lim LP, Lau NC, Garrett-Engele P, et al.Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature, 2005, 433: 769-773. |
[8] | Ho RH, Kim RB.Transporters and drug therapy: implications for drug disposition and disease[J]. Clin Pharmacol Ther, 2005, 78(3): 260-277. |
[9] | 马丁. 卵巢癌多药耐药机制的探讨[J]. 中华妇幼临床医学杂志, 2007, 8(3): 184-188. |
[10] | Zhu H, Wu H, Liu X, et al.Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells[J]. Biochem Pharmacol, 2008, 76(5): 582-588. |
[11] | Li Z, Hu S, Wang J, et al.MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells[J]. Gynecol Oncol, 2010, 119(1): 125-130. |
[12] | Chen Z, Ma T, Huang C, et al.MiR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/β-catenin pathway in hepatocellular carcinoma cells[J]. Cell Signal, 2013, 25(12):2693-701. |
[13] | Yang T, Zheng Z, Li X, et al.MiR-223 modulates multidrug resistance via downregulation of ABCB1 in hepatocellular carcinoma cells[J]. Exp Biol Med (Maywood), 2013, 238(9): 1024-1032. |
[14] | Xu Y, Xia F, Ma L, et al.MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest[J]. Cancer Lett, 2011, 310(2): 160-169. |
[15] | Xia L, Zhang D, Du R, et al.miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int J Cancer, 2008, 123(2): 372-379. |
[16] | Bao L, Hazari S, Mehra S, et al.Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298[J]. Am J Pathol, 2012, 180(6): 2490-2503. |
[17] | Wang F, Li T, Zhang B, et al.MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN[J]. Biochem Biophys Res Commun, 2013, 434(3):688-94. |
[18] | Yang L, Li N, Wang H, et al.Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance[J]. Oncol Rep, 2012, 28(2): 592-600. |
[19] | Kovalchuk O, Filkowski J, Meservy J, et al.Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin[J]. Mol Cancer Ther, 2008, 7(7): 2152-2159. |
[20] | Chen J, Tian W, Cai H, et al.Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer[J]. Med Oncol, 2012, 29(4): 2527-2534. |
[21] | Ikemura K, Yamamoto M, Miyazaki S, et al.MicroRNA-145 post-transcriptionally regulates the expression and function of P-glycoprotein in intestinal epithelial cells[J]. Mol Pharmacol, 2013, 83(2): 399-405. |
[22] | Haenisch S, Laechelt S, Bruckmueller H, et al.Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379[J]. Mol Pharmacol, 2011, 80(2): 314-320. |
[23] | Borel F, Han R, Visser A, et al.Adenosine triphosphate-binding cassette transporter genes up‐regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs[J]. Hepatology, 2012, 55(3): 821-832. |
[24] | Padmanabhan R, Chen KG, Gillet JP, et al.Regulation and expression of the ATP-binding cassette transporter ABCG2 in human embryonic stem cells[J]. Stem Cells, 2012, 30(10): 2175-2187. |
[25] | Ma MT, He M, Wang Y, et al.MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2)[J]. Cancer Lett, 2013, 339(1): 107-115. |
[26] | Jiao X, Zhao L, Ma M, et al.MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2)[J]. Breast Cancer Res Treat, 2013, 139(3): 717-30. |
[27] | Pan YZ, Morris ME, Yu AM.MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells[J]. Mol Pharmaco, 2009, 75(6): 1374-1379. |
[28] | Turrini E, Haenisch S, Laechelt S, et al.MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression[J]. Pharmacogenet Genomics, 2012, 22(3): 198-205. |
[29] | Li WQ, Li YM, Tao BB, et al. Downregulation of ABCG2 expression in glioblastoma cancer stem cells with miRNA-328 may decrease their chemoresistance[J]. Med Sci Monit, 2010, 16(10): HY27. |
[30] | Li X, Pan YZ, Seigel GM, et al.Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells[J]. Biochem Pharmacol, 2011, 81(6): 783-792. |
[31] | Shen WW, Zeng Z, Zhu WX, et al.MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells[J]. J Mol Med (Berl), 2013, 91(8):989-1000. |
[32] | Wang F, Xue X, Wei J, et al.Hsa-miR-520h down-regulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations[J]. Br J Cancer, 2010, 103(4): 567-574. |
[33] | Zaïr ZM, Eloranta JJ, Stieger B, et al.Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney[J]. Pharmacogenomics, 2008, 9(5): 597-624. |
[34] | Fisher CD, Lickteig AJ, Augustine LM, et al.Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats[J]. Eur J Pharmacol, 2009, 613(1): 119-127. |
[35] | Pogribny IP, Starlard-Davenport A, Tryndyak VP, et al.Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice[J]. Lab Invest, 2010, 90(10): 1437-1446. |
[36] | Cheung O, Puri P, Eicken C, et al.Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression[J]. Hepatology, 2008, 48(6): 1810-1820. |
[37] | Cermelli S, Ruggieri A, Marrero JA, et al.Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease[J]. PLoS One, 2011, 6(8): e23937. |
[38] | Brown BD, Naldini L.Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications[J]. Nat Rev Genet, 2009, 10(8): 578-585. |
[1] | LI Shixu, LI Linyun, WANG Xin, LI Ke, BIAN Hua. Effects of Ginkgo biloba extract on renal injury in rats with experimental renal failure through miR-145/FOXO1 axis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 728-735. |
[2] | HAO Xiao, ZHAO Mei, WANG Wenjing, ZHANG Feifei, LIU Huiliang, DANG Yi, LI Shuren, QI Xiaoyong. Application of sodium-glucose cotransporter 2 inhibitors in acute myocardial infarction [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 824-831. |
[3] | LI Miao, YU Qinwei, JIANG Zhenzhou, ZHANG Luyong, . Regulatory mechanism of LDLR and research progress of its related diseases and drugs [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 946-954. |
[4] | LIU Yanzhi, WANG Yan, LIU Kaili, ZHOU Wenhua, ZHU Ping, WANG Yingli, DU Shouying. Inhibition and mechanism of Xihuang pill on mice bearing hepatoma H22 tumor [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 754-761. |
[5] | DING Hao, GAO Zhenhua, ZHENG Yun. Research progress of microRNA in diagnosis and treatment of prostate cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 696-708. |
[6] | ZHOU Guangchen, LIU Yixi, ZHENG Yun. Colorectal cancer and microRNA: research progress [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(5): 575-587. |
[7] | CHEN Jiayin, WANG Li, WANG Lijun, TONG Gangling, MA Jie, CHEN Xijing, LU Yang. Correlation between organic cation transporter gene polymorphisms and the toxicities and clinical response of oxaliplatin [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(2): 171-177. |
[8] | DENG Ying, BAI Shutong. Research advance of chrysoeriol on its pharmacological action and underlying mechnism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(10): 1155-1162. |
[9] | PENG Jing, SONG Jing, LUAN Jiajie. Mesenchymal Stem Cells: a new discovery in the treatment of novel coronavirus pneumonia [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(9): 1073-1079. |
[10] | LIU Lu, CHEN Xiaoyan. Current status of clinical drug-drug interactions research of innovative small molecule drugs in China [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(8): 863-875. |
[11] | ZHOU Han, LIU Xiaodong. Application of physiologically based pharmacokinetic model in drug development and several questions being thought [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(8): 889-913. |
[12] | HAO Haiping. Metabolic regulation and drug target discovery researches in China: Progress and prospect [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(8): 955-963. |
[13] | YANG Huan, SHI Yuhong, RAN Haifeng, CHEN Yijin, XU Xiaoyu. Erythropoietin's biological function and source [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(4): 434-443. |
[14] | YE Peng, TAN Xing, LENG Yueqi, WANG Yangkai, WANG Weizhong. Current opinions and developments of non-pharmacological treatments of hypertension based on sympathetic nervous system [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(12): 1335-1343. |
[15] | PENG Fusheng, HUANG Xiaohui, LI Peng, TANG Jian'er. miR-34a inhibits proliferation of prostate cancer LNCaP cells by regulating androgen receptor gene [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(1): 10-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||