[1]徐象威, 陈银巧, 朱佩祯. 阿米替林联合阿片类药物治疗中重度癌痛伴抑郁患者疗效分析[J]. 中国临床药理学与治疗学, 2017, 22(10): 1145-1151.
[2]郑安海, 周冀英. 阿米替林预防性治疗偏头痛的研究进展[J]. 重庆医学, 2013, 42(24): 2925-2928.
[3]薛庆峰, 杨天德. 阿米替林在治疗神经病理性疼痛中作用机制研究和进展[J]. 国际麻醉学与复苏杂志, 2011, (3): 362-365.
[4]曾丽娟, 黄叶盛, 龚晓兵. 多潘立酮联合阿米替林治疗功能性消化不良的meta分析[J]. 内科, 2014, 9(6): 652-655.
[5]Hicks JK, Sangkuhl K, Swen JJ, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update[J]. Clin Pharmacol Ther,2017, 102(1): 37-44.
[6]Rudorfer MV, Potter WZ. Metabolism of tricyclic antidepressants[J]. Cell Mol Neurobiol, 1999, 19(3): 373-409.
[7]PGx gene-specific information tables for CYP2C19. [EB/OL].https://www. pharmgkb.org/page/cyp2c19RefMaterials>. Accessed November 20 2018.
[8]张爱玲, 胡欣, 杨莉萍. 亚洲健康人群CYP2C19基因型发生率的合并分析[J]. 中国循证医学杂志, 2014, 14(4): 427-434.
[9]Steimer W, Zopf K, von Amelunxen S, et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers[J]. Clin Chem, 2004, 50(9): 1623-1633.
[10]陈丽霞, 王志纲, 爱民. 抑郁症患者细胞色素P4502C19基因型对阿米替林血药浓度及其去甲基代谢的影响[J]. 中国神经精神疾病杂志, 2005, (1): 33-36.
[11]de Vos A, van der Weide J, Loovers HM. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients[J]. Pharmacogenomics J, 2011, 11(5): 359-367.
[12]Halling J, Weihe P, Brosen K. The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population[J]. Br J Clin Pharmacol, 2008, 65(1): 134-138.
[13]Steimer W, Zopf K, von Amelunxen S, et al. Amitriptyline or not, that is the question: pharmacogenetics testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy[J]. Clin Chem, 2005, 51(2): 376-385.
[14]Hodgson K, Tansey K, Dernovsek MZ, et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response[J]. J Psychopharmacol, 2014, 28(2): 133-141.
[15]Morita S, Shimoda K, Someya T, et al. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline[J]. J Clin Psychopharmacol, 2000, 20(2): 141-9.
[16]Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte--an update of guidelines[J]. Clin Pharmacol Ther, 2011, 89(5): 662-73.
[17]Ryu S, Park S, Lee JH, et al. A study on CYP2C19 and CYP2D6 polymorphic effects on pharmacokinetics and pharmacodynamics of amitriptyline in healthy Koreans[J]. Clin Transl Sci, 2017, 10(2): 93-101.
[18]Perry PJ, Zeilmann C, Arndt S. Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response[J]. J Clin Psychopharmacol, 1994, 14(4): 230-240.
[19]Abaut AY, Chevanne F, Le Corre P. Oral bioavailability and intestinal secretion of amitriptyline: Role of P-glycoprotein [J] ? Int J Pharm, 2007, 330(1-2):121-128.
[20]Uhr M, Tontsch A, Namendorf C, et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression[J]. Neuron, 2008, 57(2): 203-209.
[21]Leschziner GD, Andrew T, Pirmohamed M, et al. ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research[J]. Pharmacogenomics J, 2007, 7(3): 154-179.
[22]Roberts RL, Joyce PR, Mulder RT, et al. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression[J]. Pharmacogenomics J, 2002, 2(3):191-196.
[23]Jensen BP, Roberts RL, Vyas R, et al. Influence of ABCB1 (P-glycoprotein) haplotypes on nortriptyline pharmacokinetics and nortriptyline-induced postural hypotension in healthy volunteers[J]. Br J Clin Pharmacol, 2012, 73(4): 619-628. |