Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2026, Vol. 31 ›› Issue (1): 78-87.doi: 10.12092/j.issn.1009-2501.2026.01.009
Previous Articles Next Articles
Yayan SHI1(
), Yu WANG2, Wei KUANG2, Shouyang YU3,*(
)
Received:2025-04-14
Revised:2025-05-26
Online:2026-01-26
Published:2026-02-13
Contact:
Shouyang YU
E-mail:2961667421@qq.com;yusy@zmu.edu.cn
CLC Number:
Yayan SHI, Yu WANG, Wei KUANG, Shouyang YU. The latest progress in the pathogenesis of multiple sclerosis and drug therapy[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 78-87.
| 多发性硬化模型 | 建模方式 | 应用 | 参考文献 |
| 复发缓解型EAE | 对SJL/J 小鼠皮下注射髓鞘蛋白多肽 PLP139-151以诱导EAE | 复发缓解型多发性硬化 | [ |
| 进行性EAE | 对 C57BL/6J 小鼠皮下注射髓鞘少突胶质细胞糖蛋白肽 MOG35-55 以诱导EAE | 原发性进展型多发性硬化 继发进行型多发性硬化 | [ |
| TEMV诱导的模型 | 将TMEV注射到 SJL/J 小鼠脑内 | 原发性进展型多发性硬化 | [ |
| Cuprizone 诱导的模型 | 用 0.2% Cuprizone喂养 C57BL/6 小鼠 6 周 | 脱髓鞘和髓鞘再生过程 | [ |
| 溶血卵磷脂诱导的模型 | 直接注射1 μL 1%的LPC至C57BL/6小鼠的脑内 | 脱髓鞘和髓鞘再生过程 | [ |
Table 1 Commonly used animal model of multiple sclerosis
| 多发性硬化模型 | 建模方式 | 应用 | 参考文献 |
| 复发缓解型EAE | 对SJL/J 小鼠皮下注射髓鞘蛋白多肽 PLP139-151以诱导EAE | 复发缓解型多发性硬化 | [ |
| 进行性EAE | 对 C57BL/6J 小鼠皮下注射髓鞘少突胶质细胞糖蛋白肽 MOG35-55 以诱导EAE | 原发性进展型多发性硬化 继发进行型多发性硬化 | [ |
| TEMV诱导的模型 | 将TMEV注射到 SJL/J 小鼠脑内 | 原发性进展型多发性硬化 | [ |
| Cuprizone 诱导的模型 | 用 0.2% Cuprizone喂养 C57BL/6 小鼠 6 周 | 脱髓鞘和髓鞘再生过程 | [ |
| 溶血卵磷脂诱导的模型 | 直接注射1 μL 1%的LPC至C57BL/6小鼠的脑内 | 脱髓鞘和髓鞘再生过程 | [ |
| 药物名称 | 给药途径 | 可治疗的多发性 硬化类型 | 可治疗的其他自身免疫病 | 参考文献 |
| 特立氟胺 | 口服 | RRMS | 活动性类风湿性关节炎 银屑病关节炎 系统性红斑狼疮 系统性血管炎 | [ |
| 富马酸二甲酯 | 口服 | RRMS | 中重度银屑病 | [ |
| 芬戈莫德 | 口服 | RRMS | 克罗恩病 溃疡性结肠炎 银屑病 对哮喘有积极影响 | [ |
| 奥扎莫德 | 口服 | RRMS | 克罗恩病 溃疡性结肠炎 银屑病 | [ |
| 西尼莫德 | 口服 | SPMS | 克罗恩病 溃疡性结肠炎 银屑病 | [ |
| 庞西莫德 | 口服 | RRMS和SPMS | 克罗恩病 溃疡性结肠炎 银屑病 | [ |
| 克拉屈滨 | 口服 | RRMS | 活动性类风湿性关节炎 银屑病关节炎 系统性红斑狼疮 | [ |
| 干扰素 β | 皮下注射 | RRMS和SPMS | 葡萄膜炎 | [ |
| 醋酸格拉替雷 | 皮下注射 | RRMS | 尚不确定 | [ |
| 奥法木单抗 | 皮下注射 | PPMS | MS合并类风湿性关节炎 系统性红斑狼疮 | [ |
| 奥瑞珠单抗 | 静脉注射 | PPMS | MS合并类风湿性关节炎 系统性红斑狼疮 | [ |
| 那他珠单抗 | 静脉注射 | RRMS | 克罗恩病 | [ |
| 阿仑单抗 | 静脉注射 | RRMS和/或对其他治疗选择无反应的多发性硬化患者 | 对难治性肉芽肿性多血管炎、系统性血管炎、活动性和难治性类风湿关节炎、散发性包涵体肌炎有积极影响 | [ |
Table 2 Approved drugs for multiple sclerosis therapy
| 药物名称 | 给药途径 | 可治疗的多发性 硬化类型 | 可治疗的其他自身免疫病 | 参考文献 |
| 特立氟胺 | 口服 | RRMS | 活动性类风湿性关节炎 银屑病关节炎 系统性红斑狼疮 系统性血管炎 | [ |
| 富马酸二甲酯 | 口服 | RRMS | 中重度银屑病 | [ |
| 芬戈莫德 | 口服 | RRMS | 克罗恩病 溃疡性结肠炎 银屑病 对哮喘有积极影响 | [ |
| 奥扎莫德 | 口服 | RRMS | 克罗恩病 溃疡性结肠炎 银屑病 | [ |
| 西尼莫德 | 口服 | SPMS | 克罗恩病 溃疡性结肠炎 银屑病 | [ |
| 庞西莫德 | 口服 | RRMS和SPMS | 克罗恩病 溃疡性结肠炎 银屑病 | [ |
| 克拉屈滨 | 口服 | RRMS | 活动性类风湿性关节炎 银屑病关节炎 系统性红斑狼疮 | [ |
| 干扰素 β | 皮下注射 | RRMS和SPMS | 葡萄膜炎 | [ |
| 醋酸格拉替雷 | 皮下注射 | RRMS | 尚不确定 | [ |
| 奥法木单抗 | 皮下注射 | PPMS | MS合并类风湿性关节炎 系统性红斑狼疮 | [ |
| 奥瑞珠单抗 | 静脉注射 | PPMS | MS合并类风湿性关节炎 系统性红斑狼疮 | [ |
| 那他珠单抗 | 静脉注射 | RRMS | 克罗恩病 | [ |
| 阿仑单抗 | 静脉注射 | RRMS和/或对其他治疗选择无反应的多发性硬化患者 | 对难治性肉芽肿性多血管炎、系统性血管炎、活动性和难治性类风湿关节炎、散发性包涵体肌炎有积极影响 | [ |
| 1 | Haase S, Linker RA. Inflammation in multiple sclerosis [J]. Ther Adv Neurol Disord, 2021, 14: 17562864211007687. |
| 2 |
Mcginley MP, Goldschmidt CH, RaeGrant AD. Diagnosis and treatment of multiple sclerosis: a review[J]. JAMA, 2021, 325 (8): 765- 779.
doi: 10.1001/jama.2020.26858 |
| 3 |
Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions[J]. Neurology, 2014, 83 (3): 278- 286.
doi: 10.1212/WNL.0000000000000560 |
| 4 |
Cui YR, Bu ZQ, Yu HY, et al. Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis[J]. Neural Regen Res, 2023, 18 (7): 1535- 1541.
doi: 10.4103/1673-5374.358612 |
| 5 |
T Hart BA, Gran B, Weissert R. EAE: Imperfect but useful models of multiple sclerosis[J]. Trends Mol Med, 2011, 17 (3): 119- 125.
doi: 10.1016/j.molmed.2010.11.006 |
| 6 |
Pike SC, Welsh N, Linzey M, et al. Theiler's virus induced demyelinating disease as an infectious model of progressive multiple sclerosis[J]. Front Mol Neurosci, 2022, 15, 1019799.
doi: 10.3389/fnmol.2022.1019799 |
| 7 |
Zirngibl M, Assinck P, Sizov A, et al. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination[J]. Mol Neurodegener, 2022, 17 (1): 34.
doi: 10.1186/s13024-022-00538-8 |
| 8 |
Ma H, Ou ZL, Alaeiilkhi N, et al. MiR-223 enhances lipophagy by suppressing CTSB in microglia following lysolecithin induced demyelination in mice[J]. Lipids Health Dis, 2024, 23 (1): 194.
doi: 10.1186/s12944-024-02185-y |
| 9 |
Verbout NG, Su W, Pham P, et al. Cytoprotective EWE thrombin reduces disease severity in a murine model of relapsing remitting multiple sclerosis[J]. Am J Physiol Cell Physiol, 2024, 326 (1): C40- C49.
doi: 10.1152/ajpcell.00377.2023 |
| 10 |
Senol H, OzgunAcar O, Dag A, et al. Synthesis and comprehensive in vivo activity profiling of olean12en28ol, 3β pentacosanoate in experimental autoimmune encephalomyelitis: a natural remyelinating and anti inflammatory agent[J]. J Nat Prod, 2023, 86 (1): 103- 118.
doi: 10.1021/acs.jnatprod.2c00798 |
| 11 |
Sun R, Ma T, Zhao Z, et al. Phospholipase D family member 4 regulates microglial phagocytosis and remyelination via the AKT pathway in a cuprizone induced multiple sclerosis mouse model[J]. CNS Neurosci Ther, 2024, 30 (11): e70111.
doi: 10.1111/cns.70111 |
| 12 |
Bachmann H, Vandemoortele B, Vermeirssen V, et al. Vagus nerve stimulation enhances remyelination and decreases innate neuroinflammation in lysolecithin induced demyelination[J]. Brain Stimul, 2024, 17 (3): 575- 587.
doi: 10.1016/j.brs.2024.04.012 |
| 13 | LópezMuguruza E, Matute C. Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis[J]. Int J Mol Sci, 2023, 24 (16): 11985. |
| 14 | Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis[J]. J Exp Med, 2020, 217 (1): e20191130. |
| 15 | Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis [J]. J Exp Med, 2020, 217(1): e20191130. |
| 16 | Yoshimura A, Ohagi M, Ito M. T cells in the brain inflammation[J]. Adv Immunol, 2023, 157, 29- 58. |
| 17 |
Medana IM, Gallimore A, Oxenius A, et al. MHC class I restricted killing of neurons by virus specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway[J]. Eur J Immunol, 2000, 30 (12): 3623- 3633.
doi: 10.1002/1521-4141(200012)30:12<3623::AID-IMMU3623>3.0.CO;2-F |
| 18 |
Fazazi MR, Doss P, Pereira R, et al. Myelin reactive B cells exacerbate CD4(+) T cell driven CNS autoimmunity in an IL-23 dependent manner[J]. Nat Commun, 2024, 15 (1): 5404.
doi: 10.1038/s41467-024-49259-0 |
| 19 |
BarOr A, Fawaz L, Fan B, et al. Abnormal B cell cytokine responses a trigger of T cell mediated disease in MS?[J]. Ann Neurol, 2010, 67 (4): 452- 461.
doi: 10.1002/ana.21939 |
| 20 |
Wang Y, Tan Q, Pan M, et al. Minimally invasive vagus nerve stimulation modulates mast cell degranulation via the microbiota gut brain axis to ameliorate blood brain barrier and intestinal barrier damage following ischemic stroke[J]. Int Immunopharmacol, 2024, 132, 112030.
doi: 10.1016/j.intimp.2024.112030 |
| 21 |
Montilla A, Zabala A, ErLukowiak M, et al. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis[J]. Cell Death Dis, 2023, 14 (1): 16.
doi: 10.1038/s41419-023-05551-3 |
| 22 |
RodríguezMurúa S, Farez MF, Quintana FJ. The immune response in multiple sclerosis[J]. Annu Rev Pathol, 2022, 17, 121- 139.
doi: 10.1146/annurev-pathol-052920-040318 |
| 23 |
CoboCalvo Á, D'Indy H, Ruiz A, et al. Frequency of myelin oligodendrocyte glycoprotein antibody in multiple sclerosis: a multicenter cross sectional study[J]. Neurol Neuroimmunol Neuroinflamm, 2020, 7 (2): e722.
doi: 10.1212/nxi.0000000000000649 |
| 24 |
Frikeche J, David M, Mouska X, et al. MOG specific CAR Tregs: a novel approach to treat multiple sclerosis[J]. J Neuroinflammation, 2024, 21 (1): 268.
doi: 10.1186/s12974-024-03262-w |
| 25 | Agliardi C, Guerini FR, Zanzottera M, et al. Myelin basic protein in oligodendrocyte derived extracellular vesicles as a diagnostic and prognostic biomarker in multiple sclerosis: a pilot study[J]. Int J Mol Sci, 2023, 24 (1): 876. |
| 26 |
Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels[J]. Nat Rev Neurosci, 2006, 7 (12): 932- 941.
doi: 10.1038/nrn2023 |
| 27 |
Chandler HL, Stickland RC, Patitucci E, et al. Reduced brain oxygen metabolism in patients with multiple sclerosis: evidence from dual calibrated functional MRI[J]. J Cereb Blood Flow Metab, 2023, 43 (1): 115- 128.
doi: 10.1177/0271678X221121849 |
| 28 | Ma Y, Wang F, Zhao Q, et al. Identifying diagnostic markers and constructing predictive models for oxidative stress in multiple sclerosis[J]. Int J Mol Sci, 2024, 25 (14): 7823. |
| 29 |
LichtMayer S, Campbell GR, Canizares M, et al. Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis[J]. Acta Neuropathol, 2020, 140 (2): 143- 167.
doi: 10.1007/s00401-020-02179-x |
| 30 |
Balderas E, Eberhardt DR, Lee S, et al. Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment[J]. Nat Commun, 2022, 13 (1): 2769.
doi: 10.1038/s41467-022-30236-4 |
| 31 |
LichtMayer S, Campbell GR, Mehta AR, et al. Axonal response of mitochondria to demyelination and complex IV activity within demyelinated axons in experimental models of multiple sclerosis[J]. Neuropathol Appl Neurobiol, 2023, 49 (1): e12851.
doi: 10.1111/nan.12851 |
| 32 |
Helgudóttir SS, Mørkholt AS, Lichota J, et al. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system[J]. Neural Regen Res, 2024, 19 (7): 1437- 1445.
doi: 10.4103/1673-5374.387965 |
| 33 |
Heß K, Starost L, Kieran NW, et al. Lesion stage dependent causes for impaired remyelination in MS[J]. Acta Neuropathol, 2020, 140 (3): 359- 375.
doi: 10.1007/s00401-020-02189-9 |
| 34 | Liu X, Xin DE, Zhong X, et al. Small molecule induced epigenetic rejuvenation promotes SREBP condensation and overcomes barriers to CNS myelin regeneration [J]. Cell, 2024, 187(10): 2465-2484. e2422. |
| 35 |
Rimkus CM, Schoonheim MM, Steenwijk MD, et al. Gray matter networks and cognitive impairment in multiple sclerosis[J]. Mult Scler, 2019, 25 (3): 382- 391.
doi: 10.1177/1352458517751650 |
| 36 |
Zoupi L, Booker SA, Eigel D, et al. Selective vulnerability of inhibitory networks in multiple sclerosis[J]. Acta Neuropathol, 2021, 141 (3): 415- 429.
doi: 10.1007/s00401-020-02258-z |
| 37 |
Miller AE. An updated review of teriflunomide's use in multiple sclerosis[J]. Neurodegener Dis Manag, 2021, 11 (5): 387- 409.
doi: 10.2217/nmt-2021-0014 |
| 38 |
Moles L, OtaeguiChivite A, GorostidiAicua M, et al. Microbiota modulation by teriflunomide therapy in people with multiple sclerosis: an observational case control study[J]. Neurotherapeutics, 2024, 21 (6): e00457.
doi: 10.1016/j.neurot.2024.e00457 |
| 39 | Nunes CC, Abreu P, Correia F, et al. Teriflunomide treatment outcomes in multiple sclerosis: a Portuguese real life experience [J]. Brain Neurosci Adv, 2023, 7: 23982128231185290. |
| 40 |
Chan A, DeSeze J, Comabella M. Teriflunomide in patients with relapsing remitting forms of multiple sclerosis[J]. CNS Drugs, 2016, 30 (1): 41- 51.
doi: 10.1007/s40263-015-0299-y |
| 41 | Rommer PS, Milo R, Han MH, et al. Immunological aspects of approved MS therapeutics [J]. Front Immunol, 2019, 10: 1564. |
| 42 |
Shi FL, Yuan LS, Wong TS, et al. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1RIPK3MLKL axis[J]. Pharmacol Res, 2023, 189, 106697.
doi: 10.1016/j.phrs.2023.106697 |
| 43 | Abolfazli R, Sahraian MA, Tayebi A, et al. Safety and discontinuation rate of dimethyl fumarate (Zadiva®) in patients with multiple sclerosis: an observational retrospective study[J]. J Clin Med, 2023, 12 (15): 4892. |
| 44 |
Pandey KS, Giles K, Balashov K, et al. Long term safety and effectiveness of dimethyl fumarate in patients with multiple sclerosis treated in routine medical practice: final analysis of the ESTEEM study[J]. Neurol Ther, 2025, 14 (1): 243- 260.
doi: 10.1007/s40120-024-00680-z |
| 45 |
BlancoRuiz M, SánchezRodríguez B, RuizFranco ML, et al. Descriptive analysis of patients treated with diroximel fumarate and dimethyl fumarate-a real life experience[J]. J Pers Med, 2024, 15 (1): 12.
doi: 10.3390/jpm15010012 |
| 46 | Filipi M, Jack S. Interferons in the treatment of multiple sclerosis: a clinical efficacy, safety, and tolerability update[J]. Int J MS Care, 2020, 22 (4): 165- 172. |
| 47 |
Cerqueira JJ, Berthele A, Cree BAC, et al. Long term treatment with ocrelizumab in patients with early stage relapsing MS: nine year data from the OPERA studies open label extension[J]. Neurology, 2025, 104 (4): e210142.
doi: 10.1212/WNL.0000000000210142 |
| 48 |
Comi G, Cook S, Giovannoni G, et al. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis[J]. Mult Scler Relat Disord, 2019, 29, 168- 174.
doi: 10.1016/j.msard.2019.01.038 |
| 49 | Kasindi A, Fuchs DT, Koronyo Y, et al. Glatiramer acetate immunomodulation: evidence of neuroprotection and cognitive preservation[J]. Cells, 2022, 11 (9): 1405. |
| 50 |
Diouf I, Malpas CB, Sharmin S, et al. Effectiveness of multiple disease modifying therapies in relapsing remitting multiple sclerosis: causal inference to emulate a multiarm randomised trial[J]. J Neurol Neurosurg Psychiatry, 2023, 94 (12): 1004- 1011.
doi: 10.1136/jnnp-2023-331499 |
| 51 |
Yang J, Sun Y, Zhou X, et al. Risk of secondary autoimmune diseases with alemtuzumab treatment for multiple sclerosis: a systematic review and meta analysis[J]. Front Immunol, 2024, 15, 1343971.
doi: 10.3389/fimmu.2024.1343971 |
| 52 |
SainzAmo R, RoderoRomero A, Monreal E, et al. Effect of alemtuzumab over sNfL and sGFAP levels in multiple sclerosis[J]. Front Immunol, 2024, 15, 1454474.
doi: 10.3389/fimmu.2024.1454474 |
| 53 |
Mcginley MP, Cohen JA. Sphingosine 1 phosphate receptor modulators in multiple sclerosis and other conditions[J]. Lancet, 2021, 398 (10306): 1184- 1194.
doi: 10.1016/S0140-6736(21)00244-0 |
| 54 |
Coyle PK, Freedman MS, Cohen BA, et al. Sphingosine 1 phosphate receptor modulators in multiple sclerosis treatment: a practical review[J]. Ann Clin Transl Neurol, 2024, 11 (4): 842- 855.
doi: 10.1002/acn3.52017 |
| 55 | Lamb YN. Ocrelizumab: a review in multiple sclerosis [J]. Drugs, 2022, 82(3): 323-334. |
| 56 |
Hauser SL, Zielman R, DasGupta A, et al. Efficacy and safety of four year ofatumumab treatment in relapsing multiple sclerosis: the ALITHIOS open label extension[J]. Mult Scler, 2023, 29 (11-12): 1452- 1464.
doi: 10.1177/13524585231195346 |
| 57 |
Konen FF, Möhn N, Witte T, et al. Treatment of autoimmunity: the impact of disease modifying therapies in multiple sclerosis and comorbid autoimmune disorders[J]. Autoimmun Rev, 2023, 22 (5): 103312.
doi: 10.1016/j.autrev.2023.103312 |
| 58 |
袁宸, 赵霞, 吴嘉宝, 等. S1P在哮喘中的研究现状及应用前景[J]. 实用医学杂志, 2024, 40 (7): 936- 940.
doi: 10.3969/j.issn.1006-5725.2024.07.010 |
| 59 | iMSMS Consortium. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course [J]. Cell, 2022, 185(19): 3467-3486. e3416. |
| 60 | Wang X, Chang L, Wan X, et al. (R)ketamine ameliorates demyelination and facilitates remyelination in cuprizone treated mice: a role of gut microbiota brain axis[J]. Neurobiol Dis, 2022, 165, 105635. |
| 61 |
BenítezFernández R, JosaPrado F, Sánchez E, et al. Efficacy of a benzothiazole based LRRK2 inhibitor in oligodendrocyte precursor cells and in a murine model of multiple sclerosis[J]. CNS Neurosci Ther, 2024, 30 (1): e14552.
doi: 10.1111/cns.14552 |
| 62 |
Denaroso GE, Smith Z, Angeliu CG, et al. Deletion of voltage gated calcium channels in astrocytes decreases neuroinflammation and demyelination in a murine model of multiple sclerosis[J]. J Neuroinflammation, 2023, 20 (1): 263.
doi: 10.1186/s12974-023-02948-x |
| 63 | Asmis R, Medrano MT, ChaseHuizar C, et al. Dietary supplementation with 23 hydroxy ursolic acid reduces the severity and incidence of acute experimental autoimmune encephalomyelitis (EAE) in a murine model of multiple sclerosis[J]. Nutrients, 2024, 16 (3): 373. |
| [1] | LIU Xing, CHEN Ying. Drug therapy and new technology progress of type 2 diabetes mellitus [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(9): 1215-1223. |
| [2] | JING Jiawen, MENG Qingbo, BI Zheng, WANG Fanjing, LI Yufan, FANG Zhaohui. Advances in animal models of diabetic erectile dysfunction based on therapeutic approaches [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(9): 1224-1232. |
| [3] | XU Linlin, ZHANG Dou, DING Pengtao, XI Xiaoxia, YANG Pengfei, ZHANG Xiaoya, LI Tingbao. Protective mechanism of Guomin decoction against atopic dermatitis in mice based on TLR4/MyD88/NF-κB signaling pathway [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(12): 1648-1657. |
| [4] | ZHANG Guohua, WANG Zhandong, QI Wenxia, ZHANG Qiqi, TIAN Jiexiang, ZHANG Yanying, GUO Chao, WANG Yongfeng. Progress of B lymphocytes in the pathogenesis of primary Sjogren's syndrome [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(12): 1722-1728. |
| [5] | ZHOU Mingjun, SANG Xue, CHANG Jingwen, LIU Fang, TAO Yu, FAN Fangtian. Development of the mechanism of cationic imbalance in secondary spinal cord injury and potential intervention drugs [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(11): 1559-1568. |
| [6] | LIU Xuan, FENG Cuijuan, WANG Yiqiang, LI Fang. Research progress of miRNA in ulcerative colitis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(8): 917-929. |
| [7] | BAI Xuechun, CHEN Shuo, LI Shanshan, LI Qinglin. Intervention study on the progress of subacute Parkinson's disease in mice with Kangzhen Zhijing spasmodic decoction Ⅰ [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(6): 629-636. |
| [8] | HUANG Chunzhi, LIU Qinglan, SU Ran, SUN Nan. Drug treatment options and research progress of adolescent endometriosis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(5): 535-542. |
| [9] | ZHAO Zishuo, ZHU Yuguang, MA Yanshan, LI Zhiwei, JING Yongshuai, XIE Yinghua. Effects of different formulations of high-fat diet on establishment of a non-alcoholic fatty liver model in rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(5): 543-553. |
| [10] | ZHAO Quanming, YANG Mandou, HU Yibo, SU Youtong, PU Li, ZHANG Yu, LI Wenliang. Research progress on drug treatment and drug resistance mechanism of gastrointestinal stromal tumors [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(1): 82-89. |
| [11] | WANG Chaoyi, SONG Qiang, XIONG Xin, WANG Mengyuan. Research progress on diagnosis and treatment of granulomatous lobular mastitis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 910-917. |
| [12] | ZHANG Mingkang, MA Yanrong, JIN Yongwen, ZHOU Yan, CUI Ruirui, WU Xin'an. Advances in clinical research on drug-induced acute interstitial nephritis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 419-428. |
| [13] | HUANG Huizhen, HAN Lei, LIN Xiaodong, CHEN Lei. Research progress on signal pathways related to the pathogenesis of pancreatitis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(1): 109-113. |
| [14] | MENG Shi, WANG Zhongqun. Research progress on human immunodeficiency virus-associated pulmonary arterial hypertension [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(12): 1431-1440. |
| [15] | LU Xiaohong, HE Caifeng, Ci Chao, YUAN Tao. Progress in the treatment of mucosal pemphigoid [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(10): 1197-1200. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||