[1] Tripodi A. Levels of coagulation factors and venous thromboembolism[J]. Haematologica, 2003,88(6): 705-711. [2] Moayeri M, Ramezani A, Morgan RA, et al. Sustained phenotypic correction of hemophilia a mice following oncoretroviral-mediated expression of a bioengineered human factor VIII gene in long-term hematopoietic repopulating cells[J]. Mol Ther, 2004, 10(5): 892-902. [3] Van Damme A, Chuah MK, Dell'accio F, et al. Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats[J]. Haemophilia, 2003,9(1): 94-103. [4] Herder C, Tonn T, Oostendorp R, et al. Sustained expansion and transgene expression of coagulation factor VIII-transduced cord blood-derived endothelial progenitor cells[J]. Arterioscler Thromb Vasc Biol, 2003, 23(12): 2266-2272. [5] Andrews JL, Weaver L, Kaleko M, et al. Efficient adenoviral vector transduction and expression of functional human factor VIII in cultured primary human hepatocytes[J]. Haemophilia, 1999, 5(3): 160-168. [6] Andrews JL, Kadan MJ, Gorziglia MI, et al. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII[J]. Mol Ther, 2001, 3(3): 329-336. [7] Chao H, Mao L, Bruce AT, et al. Sustained expression of therapeutic levels of human factor VIII in mice[J]. Blood, 1996, 87(11): 4671-4677. [8] Chuah MK, Schiedner G, Thorrez L, et al. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors[J]. Blood, 2003, 101(5): 1734-1743. [9] Schmidt M, Voutetakis A, Afione S, et al. Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity[J]. J Virol, 2008, 82(3): 1399-406. [10] Gnatenko DV, Saenko EL, Jesty J, et al.Human factor VIII can be packaged and functionally expressed in an adeno-associated virus background: applicability to haemophilia A gene therapy[J]. Br J Haematol, 1999, 104(1): 27-36. [11] Sarkar R, Xiao W, Kazazian HH Jr. A single adeno-associated virus (AAV)-murine factor VIII vector partially corrects the hemophilia A phenotype[J]. J Thromb Haemost, 2003, 1(2): 220-226. [12] Jiang H, Lillicrap D, Patarroyo-White S, et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs[J]. Blood, 2006, 108(1): 107-115. [13] Burton M, Nakai H, Colosi P, et al. Coexpression of factor VIII heavy and light chain adeno-associated viral vectors produces biologically active protein[J]. Proc Natl Acad Sci USA, 1999, 96(22): 12725-12730. [14] Chen L, Zhu F, Li J, et al. The enhancing effects of the light chain on heavy chain secretion in split delivery of factor VIII gene[J]. Mol Ther, 2007,15(10): 1856-1862. [15] Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA[J]. Gene Ther, 1999, 6(7): 1258-1266. [16] Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA[J]. Hum Gene Ther, 1999, 10(10): 1735-1737. [17] Herweijer H, Zhang G, Subbotin VM, et al. Time course of gene expression after plasmid DNA gene transfer to the liver[J]. J Gene Med, 2001, 3(3): 280-291. [18] Ye P, Thompson AR, Sarkar R, et al. Naked DNA transfer of Factor VIII induced transgene-specific, species-independent immune response in hemophilia A mice[J]. Mol Ther, 2004, 10(1): 117-126. [19] Turgeman G, Pittman DD, Müller R, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy[J]. J Gene Med, 2001, 3(3): 240-251. [20] Roth DA, Tawa NE Jr, O'Brien JM, et al. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A[J]. N Engl J Med, 2001, 344(23): 1735-1742. [21] Lin Y, Chang L, Solovey A, et al. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A[J]. Blood, 2002, 99(2): 457-462. [22] Mátrai J, Chuah MK, VandenDriessche T. Preclinical and clinical progress in hemophilia gene therapy[J]. Curr Opin Hematol, 2010, 17(5):387-392. [23] Ohlfest JR, Frandsen JL, Fritz S, et al. Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system[J]. Blood, 2005, 105(7): 2691-2698. [24] Chao H, Mansfield SG, Bartel RC, et al. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing[J]. Nat Med, 2003, 9(8): 1015-1019. [25] 郭建友, 霍海如, 姜廷良, 内皮细胞功能及其异质性研究的进展[J]. 中国临床药理学与治疗学, 2005, 10(10): 1081-1085. [26] Rosenberg JB, Greengard JS, Montgomery RR. Genetic induction of a releasable pool of factor VIII in human endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2000,20(12):2689-2695. [27] Matsui H, Shibata M, Brown B, et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors[J]. Stem Cells, 2007, 25(10): 2660-2669. [28] Ide LM, Gangadharan B, Chiang KY, et al. Hematopoietic stem-cell gene therapy of hemophilia A incorporating a porcine factor VIII transgene and nonmyeloablative conditioning regimens[J]. Blood, 2007, 110(8): 2855-2863. [29] Jeon HJ, Oh TK, Kim OH, et al. Delivery of factor VIII gene into skeletal muscle cells using lentiviral vector[J]. Yonsei Med J, 2010,51(1): 52-57. |