Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2011, Vol. 16 ›› Issue (10): 1179-1185.
Previous Articles Next Articles
DONG Min, LIU Zhao-qian
Received:
2011-08-01
Revised:
2011-09-23
Online:
2011-10-26
Published:
2011-11-02
CLC Number:
DONG Min, LIU Zhao-qian. Progress in protein tyrosine phosphates (PTPs) related to insulin signaling pathway[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2011, 16(10): 1179-1185.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2011/V16/I10/1179
[1] Tonks NK. Protein tyrosine phosphates: from genes, to function, to disease[J]. Nat Rev Mol Cell Biol, 2006, 7(11): 833-846. [2] Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signaling pathways: insights into insulin action[J]. Nat Rev Mol Cell Biol, 2006, 7(2): 85-96. [3] Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphates 1B inhibitors for diabetes[J]. Nat Rev Drug Discov, 2002, 1(9): 696-709. [4] White MF, Kahn CR. The insulin signaling system[J]. J Biol Chem, 1994, 269(1): 1-4. [5] Ostman A, Hellberg C, Bohmer FD. Protein tyrosine phosphates and cancer[J]. Nat Rev Cancer, 2006,6(4):307-320. [6] Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphates in the human genome[J]. Cell, 2004, 117(6):699-711. [7] Elchebly M, Cheng A,Tremblay ML. Modulation of insulin signaling by protein tyrosine phosphates[J]. J Mol Med, 2000, 78(9): 473-482. [8] Goldstein BJ. Protein-tyrosine phosphates 1B (PTP1B): a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance[J]. Immune Endocr Metabol Disord, 2001, 1(3): 265-275. [9] Buist A, Zhang YL, Keng YF, et al. Restoration of potent protein-tyrosine phosphates activity into the membrane-distal domain of receptor protein-tyrosine phosphates alpha[J]. Biochemistry, 1999, 38(3): 914-922. [10] Groen A, Lemeer S, van der Wijk T, et al. Differential oxidation of protein-tyrosine phosphates[J]. J Biol Chem, 2005, 280(11): 10298-10304. [11] Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphates in vivo[J]. Mol Cell, 2002, 9(2): 387-399. [12] Wishart MJ, Dixon JE. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains[J]. Trends Biochem Sci, 1998, 23(8): 301-306. [13] Robinson FL, Dixon JE. The phosphoinositide-3-phosphatase MTMR2 associates with MTMR13,a membrane-associated pseudo-phosphates also mutated in type 4B Charcot-Marie-Tooth disease[J]. J Biol Chem, 2005, 280(36): 31699-31707. [14] Kim SA, Vacratsis PO, Firestein R, et al. Regulation of myotubularin-related (MTMR)2 Phosphatidylinositol phosphates by MTMR5, a catalytically inactive phosphates[J]. Proc Natl Acad Sci USA, 2003, 100(8): 4492-4497. [15] Kasibhatla B, Wos J, Peters KJ. Targeting protein tyrosine phosphates to enhance insulin action for the potential treatment for diabetes[J]. Curr Opin Investig Drugs, 2007, 8 (10): 805-813. [16] Ahmad F, Goldstein BJ. Functional association between the insulin receptor and the Tran membrane protein-tyrosine phosphates LAR in intact cells[J]. J Biol Chem, 1997, 272(1): 448-457. [17] Li PM, Zhang WR, Goldstein BJ. Suppression of insulin receptor activation by over expression of the protein tyrosine phosphates LAR in hepaticas cells[J]. Cell Signal, 1996, 8(7): 467-473. [18] Kulas DT, Goldstein BJ, Mooney RA. The transmembrane protein-tyrosine phosphates LAR modulates signaling by multiple receptor tyrosine kinases[J]. J Biol Chem, 1996, 271(2): 748-754. [19] Ren JM, Li PM, Zhang WR, et al. Transgenic mice de?cient in the LAR protein-tyrosine phosphates exhibit profound defects in glucose homeostasis[J]. Diabetes, 47(3): 493-497. [20] Zabolotny JM, Kim YB, Peroni OD, et al. Over expression of the LAR (leukocyte antigen-related) protein-tyrosine phosphates in muscle causes insulin resistance[J]. Proc Natl Acad Sci USA, 2001, 98(9): 5187-5192. [21] Moller NP, Moller KB, Lammers R, et al. Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphates alpha and epsilon[J]. J Biol Chem, 1995, 270(39): 23126-23131. [22] Cong LN, Chen H, Li Y,et al. Over expression of protein tyrosine phosphates-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells[J]. Biochem Biophys Res Commun, 1999, 255(2): 200-207. [23] Arnott CH, Sale EM, Miller J, et al. Use of an antisense strategy to dissect the signaling role of protein-tyrosine phosphates alpha[J]. J Biol Chem, 1999, 274(37): 26105-26112. [24] Su J, Muranjan M, Sap J. Receptor protein tyrosine phosphates alpha activates Src-family kinas sand controls integrant-mediated responses in fibroblasts[J]. Curr Biol,1999, 9(10): 505-511. [25] Le HT, Ponniah S, Pallen CJ. Insulin signaling and glucose homeostasis in mice lacking protein tyrosine phosphates alpha[J]. Biochem Biophys Res Commun, 2004, 314(2):321-329. [26] Rocchi S, Tartare-Deckert S, Sawka-Verhelle D, et al. Interaction of SH2-containing protein tyrosine phosphates 2 with the insulin receptor and the insulin-like growth factor-I receptor: studies of the domains involved using the yeast two-hybrid system[J]. Endocrinology, 1996, 137(11): 4944-4952. [27] Tenev T, Keilhack H, Tomic S ,et al. Both SH2 domains are involved in interaction of SHP-1 with the epidermal growth factor receptor but cannot confer receptor-directed activity to SHP-1/SHP-2chimera[J]. J Biol Chem, 1997, 272(9): 5966-5973. [28] Hayashi K, Shibata K, Morita T, et al. Insulin receptor substrate-1/SHP-2 interaction, a phenotype dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells[J]. J Biol Chem, 2004, 279(39): 40807-40818. [29] Milarski KL, Saltiel AR. Expression of catalytically inactive Spy phosphates in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin[J]. J Biol Chem, 1994, 269(33): 21239-21243. [30] Clemmons DR, Maile LA. Mini review: integral membrane proteins that function coordinately with the Insulin-like Growth Factor 1 Receptor to regulate intracellular signaling[J]. Endocrinology, 2003, 144(5): 1664-1670. [31] Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis[J]. Annu Rev Genomics Hum Genet,2005, 6: 45-68. [32] Mohi MG, Neel BG. The role of Shp2 (PTPN11) in cancer[J]. Curr Opin Genet Dev, 2007, 17(1): 23-30. [33] Tonks NK, Diltz CD, Fischer EH. Purification of the major protein tyrosine phosphates of human placenta[J]. J Biol Chem, 1988, 263(14): 6722-6730. [34] Frangioni JV, Beahm PH, Shifrin V, et al. The non transmembrane tyrosine phosphates PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence[J]. Cell, 1992, 68(3):545-560. [35] Brown-Shimer S, Johnson KA, Lawrence JB, et al. Molecular cloning and chromosome mapping of the human gene encoding protein tyrosyl phosphates 1B[J]. Proc Natl Acad Sci USA, 1990,87(13): 5148-5152. [36] Echwald SM, Bach H, Vestergaard H, et al. A P387L variant in protein tyrosinphosph e atase-1B (PTP1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro[J]. Diabetes, 2002, 51(1): 1-6. [37] Mok A, Cao H, Zinman B, et al. A single nucleotide polymorphism in protein tyrosine phosphates PTP-1B is associated with protection from diabetes or impaired glucose tolerance in Oji-Cree[J]. J Clin Endocrinol Metab, 2002, 87(2): 724-727. [38] Di Paola R, Frittitta L, Miscio G, et al. A variation in 3' UTR of hPTP1B increases gene expression and associates with insulin resistance[J]. Am J Hum Genet, 2002, 70(3): 806-812. [39] Bento JL, Palmer ND, Mychaleckyj J, et al. Association of protein tyrosine phosphates 1B gene polymorphisms with type 2 diabetes[J]. Diabetes, 2004, 53(11): 3007-3012. [40] Florez JC, Agapakis CM, Burtt NP, et al. Association testing of the protein tyrosine phosphates 1B gene (PTPN1) with type 2 diabetes in 7,883 people[J]. Diabetes, 2005, 54(6): 1884-1891. [41] Traurig M, Hanson RL, Kobes S, et al. Protein tyrosine phosphates 1B is not a major susceptibility gene for type 2 diabetes mellitus or obesity among Pima Indians[J]. Diabetologia, 2007, 50(5):985-989. [42] Cheyssac C, Lecoeur C, Dechaume A, et al. Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population[J]. BMC Med Genet, 2006, 7:(44). [43] Seely BL, Staubs PA, Reichart DR, et al. Protein tyrosine phosphates 1B interacts with the activate insulin receptor[J]. Diabetes, 1996, 45(10): 1379-1385. [44] Bandyopadhyay D, Kusari A, Kenner KA, et al. Protein-tyrosine phosphates 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin[J]. J Biol Chem, 1997, 272(3): 1639-1645. [45] Cicirelli MF, Tonks NK, Diltz CD,et al. Microinjection of a protein-tyrosine-phosphate inhibits insulin action in Xenopus oocytes[J]. Proc Natl Acad Sci USA, 1990, 87(14): 5514-5518. [46] Fukuda S, Ohta T, Sakata S, et al. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT-551[J]. Diabetes Obes Metab,2010, 12(4):299-306. [47] Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin[J]. Best Pract Res Clin Endocrinol Metab, 2007, 21(4):621-640. |
[1] | MA Yan, TIAN Gaopeng, SHI Xingwen, SUN Ting, XIE Jingjing, ZHEN Donghu. Correlation between 25(OH)D and metabolically related fatty liver in T2DM population [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(9): 1018-1026. |
[2] | MA Xiankang, YANG Lixia, CUI Yangyang, MI Denghai. Angelica polysaccharides improve hepatic endoplasmic reticulum stress by inhibiting the expression of GRP78, p-PERK and p-Eif2α in diabetic KK-Ay mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 926-936. |
[3] | HOU Ruiying, GUO Lige, JIAO Weijie, DU Lei, WU Guiyue, ZHAO Xu. Effects of Xiaokeshu recipe on levels of serum inflammatory factors in type2 diabetic rats and its mechanism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 377-382. |
[4] | ZHAO Shifeng, SONG Xiangming, YAO Jianping. Tirzepatide: A new glucagon-like peptide-1 receptor/glucose-dependent insulinotropic peptide receptor dual agonist [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 220-227. |
[5] | DU Xiaoyu, LI Yumeng, WU Huizhen, QIU Bo. Pharmacological and clinical evaluation of Dorzagliatin in the treatment of type 2 diabetes [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1177-1183. |
[6] | CAI Jing, PAN Binjing, LIU Jingfang. Research progress on the relationship between hypoglycemic drugs and sarcopenia [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(1): 101-108. |
[7] | ZHAI Weiwei, YU Qiaoling, LIU Ping, QIU Bo, WU Huizhen. Research progress of finerenone in the treatment of type 2 diabetes mellitus complicated with chronic kidney disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1067-1074. |
[8] | LU Senlin, LIU Xinyuan, WANG Jili, HUANG Xiaofei. Research progress of virus-mediated gene therapy in type 2 diabetes mellitu [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 800-807. |
[9] | ZENG Xiaofan, XU Yiqi, LIU Shu, WU Qian, LI Zibao, HE Junjun, JIN Yuelong, ZHAO Yongli, HE Chunling, GAO Jialin. Retrospectively analysis of the effect of low-dose aspirin on primary prevention of non-fatal myocardial infarction and cerebral infarction in patients with type 2 diabetes mellitus [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 665-671. |
[10] | SHAO Xi, YU Yanan, HUANG Yuhan, WANG Xiaotong, LING Hongwei, LV Dongmei, WANG Tao. Predictive factors associated with weight response to exenatide in patients with type 2 diabetes mellitus [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(3): 287-294. |
[11] | DAI Hongyu, YANG Kun, HU Ruchun, ZHOU Hongmei, MA Peimin, HAO Qian. Duration time and effectiveness of 0.25%ropivacaine for sciatic nerve block in patients with diabetes [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(11): 1278-1284. |
[12] | CHEN Qian, WANG Yafeng, DUO Delong, CHANG Ya'e, YAN Yingjun, DUAN Kunkun. Trigliptin succinate have an effect on gut microbiota of type 2 diabetic mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(1): 15-24. |
[13] | WANG Chunling, ZHOU Renjing, FENG Rui, WU Yanneng. Effect of adiponectin 45 T/G gene polymorphism on type 2 diabetes treated with liraglutide [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(3): 312-317. |
[14] | XU Yongxia, XIE Mingzhu, GONG Muxue, HUANG Jiaying, ZHAO Li, ZHU Defa. Effects of 25(OH)D on islet β-cells function in the elderly with type 2 diabetes [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(9): 1021-1026. |
[15] | ZHAO Hailing, ZHANG Haojun, ZHAO Tingting, YAN Meihua, DONG Xi, MA Liang, LI Ping. Association between the polymorphism of PNPLA2 gene and the risk of ischemic stroke in type 2 diabetic patients in Chinese Han Population [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(6): 664-669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||