Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2014, Vol. 19 ›› Issue (11): 1299-1305.
Previous Articles Next Articles
LIN Mei-qin1, 2, ZHANG Jing1, YU Liang-ping1, 2, SONG Hong-tao1
Received:2013-10-07
Revised:2014-11-11
Online:2014-11-26
Published:2014-12-09
CLC Number:
LIN Mei-qin, ZHANG Jing, YU Liang-ping, SONG Hong-tao. Advances of individualized administration model of warfarin based on pharmacogenomics[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(11): 1299-1305.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2014/V19/I11/1299
| [1] | Oates A, Jackson PR, Austin CA, et al.A new regimen for starting warfarin therapy in out-patients[J]. Br J Clin Pharmacol, 1998, 46(2): 157-161. |
| [2] | Yuan HY, Chen JJ, Lee MTM, et al.A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity[J]. Hum Mol Genet, 2005, 14(13): 1745-1751. |
| [3] | 谢爽, 娄莹, 刘红,等. 已建立的华法林初始剂量预测模型对中国患者华法林维持剂量的预测价值.[A]; 中国心脏大会(CHC)2011暨北京国际心血管病论坛论文集[C]; 2011年. |
| [4] | Gong IY, Schwarz UI, Crown N,et al.Clinical and Genetic Determinants of Warfarin Pharmacokinetics and Pharmacodynamics during Treatment Initiation[J]. PLoS ONE, 2011, 6(11):e27808 |
| [5] | Gong IY, Tirona RG, Schwarz UI, et al.Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy[J].Blood, 2011,118: 3163-3171. |
| [6] | Sconce EA, Khan TI, Wynne HA, et al.The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen[J]. Blood, 2005, 106(7): 2329-2333. |
| [7] | McMillin GA, Melis R, Wilson A, et al. Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study[J]. Ther Drug Monit,2010, 32(3): 338-345. |
| [8] | Carlquist JF, Horne BD, Muhlestein JB, et al.Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study[J]. J Thromb Thrombolysis, 2006, 22(3): 191-197. |
| [9] | Anderson JL, Horne BD, Stevens SM, et al.Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation[J]. Circulation, 2007, 116(22): 2563-2570. |
| [10] | Gage BF,Eby C, Johnson JA, et al.Use of Pharmacogenetic and Clinical Factors to Predict the Therapeutic Dose of Warfarin[J]. Clin Pharmacol Ther, 2008, 84(3):326-331. |
| [11] | Kimmel SE, French B, Anderson JL, et al.Rationale and design of the Clarification of Optimal Anticoagulation through Genetics trial[J]. Am Heart J,2013;166:435-441. |
| [12] | The International Warfarin Pharmacogenetics Consortium. Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data[J]. N Engl J Med, 2009, 360(8): 753-764. |
| [13] | Caldwell MD, Awad T, Johnson JA, et al.CYP4F2 genetic variant alters required warfarin dose[J]. Blood,2008,111(8):4106-4112. |
| [14] | Wells PS, Majeed H, Kassemb S, et al.A regression model to predict warfarin dose from clinical variables and polymorphisms in CYP2C9, CYP4F2, and VKORC1: Derivation in a sample with predominantly a history of venous thromboembolism[J]. Thromb Res, 2010, 125:e259-e264. |
| [15] | Zambon CF, PengoVV, Padrini R, et al. VKORC1, CYP2C9 and CYP4F2 genetic-based algorithm for warfarin dosing: an Italian retrospective study[J]. Pharmacogenomics, 2011,12(1):15-25. |
| [16] | Wadelius M, Chen LY, Lindh JD, et al.The largest prospective warfarin-treated cohort supports genetic forecasting[J]. Blood, 2009,113:784-792. |
| [17] | Kumar DK, Shewade DG, Loriot MA, et al. Effect of CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating a new pharmacogenetic algorithm in South Indian population[J]. Eur J Clin Pharmacol, 2013,6, published online. |
| [18] | Miao LY, Yang J, Huang CR, et al.Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients[J]. Eur J Clin Pharmacol, 2007, 63(12): 1135-1141. |
| [19] | 马心超, 缪丽燕. 华法林个体化抗凝剂量多元回归方程临床验证研究[D]. 苏州大学, 2009. |
| [20] | Wen MS, Lee MTM, Chen JJ, et al.Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes[J]. Clin pharmacol Ther, 2008, 84(1): 83-89. |
| [21] | Ohno M, Yamamoto A, Ono A, et al.Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients[J]. Eur J Clin Pharmacol, 2009, 65(11): 1097-1103. |
| [22] | Huang SW, Chen HS, Wang XQ, et al.Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients[J]. Pharmacogenet Genom, 2009, 19(3): 226-234. |
| [23] | 黄盛文, 徐湘民. VKORC1和CYP2C9基因型对中国人华法林个体化用药剂量影响的前瞻性研究[D]. 广州: 南方医科大学,2008. |
| [24] | Wang MS, Lang XL, Cui ST, et al.Clinical Application of Pharmacogenetic-Based Warfarin-Dosing Algorithm in Patients of Han Nationality after Rheumatic Valve Replacement: A Randomized and Controlled Trial[J]. Int J Med Sci, 2012,9(6):472-479. |
| [25] | Wei M, Ye F, Xie DJ, et al.A new algorithm to predict warfarin dose from polymorphisms of CYP4F2, CYP2C9 and VKORC1 and clinical variables: Derivation in Han Chinese patients with non valvular atrial fibrillation[J]. Thromb Haemost, 2012,107: 1083-1091. |
| [26] | 谭胜蓝,彭娟,周新民,等. 验证并比较华法林稳定剂量预测模型对中国心脏瓣膜置换术后患者预测准确性[J].中国临床药理学与治疗学, 2012,17(9):1026-1033. |
| [27] | 余靓平, 宋洪涛, 曾志勇, 等. 基于药物基因组学的华法林给药模型的验证[J].中华心血管病杂志, 2012, 40(7):614-619. |
| [28] | 付博, 董力, 石应康. 中国人心脏瓣膜置换术后抗凝治疗数据库建设[J]. 中国胸心血管外科临床杂志, 2013, 20(1):3-9. |
| [1] | LI Kun, LI Lulu, LI Nannan, HU Weihong, ZHOU Jianchao. Effects of glycaemic control and CYP3A5 polymorphisms on tacrolimus trough concentrations after adult kidney transplantation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 767-774. |
| [2] | HOU Qiong, LIU Fei, CHEN Chuanrong. Immunotherapy combined with anti-angiogenic drugs and chemotherapy in negative driver gene and advanced non-small cell lung cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 775-779. |
| [3] | LIU Xiumei, GUO Qianqian, FANG Yuan, CHEN Nan, QI Qi. Pharmaceutical care of patients with antithrombotic therapy after transjugular intrahepatic portal shunt [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 556-560. |
| [4] | WU Yuanzhu, LIU Jun, YANG Kui, PENG Jing, LUAN Jiajie, WEI Jun, ZHANG Dafa, SONG Shuai, YUAN Xiaolong, WANG Zhongfang, ZHANG Nianbao, XIE Dan, JIANG Peng, FAN Jie. Distribution of CYP2C9*3 and VKORC1-1639G>A gene polymorphism in Anhui Han population and their influence on the stable dose of warfarin [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 652-659. |
| [5] | WANG Qi, ZOU Yunzeng. New development of lipid-lowering therapy of coronary heart disease: Evinacumab [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(4): 362-364. |
| [6] | WANG Qi, ZOU Yunzeng. New development of lipid-lowering therapy of coronary heart disease: Inclisiran [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(4): 365-368. |
| [7] | LIAN Jinfang, LIU Yiwei, LIN Cuihong, HUANG Pinfang, LIN Rongfang. Comparison of prediction accuracy between warfarin PPK/PD model and multiple regression dose models [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(3): 267-273. |
| [8] | SUN Yuanyuan, DENG Kunhong, WANG Siyi, KUANG Yun, ZOU Chan, GUO Chengxian, HE Qingnan, LIU Helin, YANG Guoping. Design and implementation of electronic identity application for gene-directed personalized medicine [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(3): 274-280. |
| [9] | ZHANG Jinhua, LIU Maobai, CAI Mingzhi, ZHENG Yingli, LAO Haiyan, XIANG Qian, DU Liping, ZHU Zhu, DONG Jing, ZUO Xiaocong, LI Xingang, SHANG Dewei, CHEN Bing, YE Yanrong, WANG Yuzhu, GAO Jianjun, ZHANG Jian, CHEN Wansheng, XIE Haitang, JIAO Zheng. Model informed precision dosing of warfarin: China expert consensus report (2022 version) [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(11): 1201-1212. |
| [10] | DENG Ying, BAI Shutong. Research advance of chrysoeriol on its pharmacological action and underlying mechnism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(10): 1155-1162. |
| [11] | WEN Dusu, WANG Yi, SUN Jianjun. Comparison of Bayesian method and multiple linear regression method in predicting warfarin dose model [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(1): 33-38. |
| [12] | WANG Hui, XU Xiaofang, LI Rong. Therapeutic drug monitoring in the individualized administration of cyclosporin A: Application and research progress [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(6): 707-713. |
| [13] | XING Kai, GONG Jinyu, LUO Jianquan. Advances on pharmacogenomics of diuretics-related adverse reactions [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(2): 204-212. |
| [14] | . Research Progress of Pharmacogenomics of Dabigatran Etexilate and Rivaroxaban [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(10): 1200-1207. |
| [15] | ZHAI Yu, YANG Jin. Effects of dietary vitamin K on the stability of warfarin anticoagulation therapy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(6): 709-715. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||