[1] Samsa WE, Zhou X, Zhou G. Signaling pathways regulating cartilage growth plate formation and activity[J]. Semin Cell Dev Biol, 2017, 62:3-15. [2] Agirdil Y. The growth plate:A physiologic overview[J]. EFORT Open Rev, 2020, 5(8):498-507. [3] Haraguchi R, Kitazawa R, Imai Y, et al. Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone[J]. Histochem Cell Biol, 2018, 149(4):365-373. [4] Mackie EJ, Tatarczuch L, Mirams M. The skeleton:A multi-functional complex organ:The growth plate chondrocyte and endochondral ossification[J]. J Endocrinol, 2011, 211(2):109-121. [5] Lefebvre V, Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage[J]. Connect Tissue Res, 2017, 58(1):2-14. [6] Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation[J]. Histochem Cell Biol, 2018, 149(4):313-323. [7] Zollinger AJ, Smith ML. Fibronectin, the extracellular glue[J]. Matrix Biol, 2017, 60-61:27-37. [8] Lee CS, Fu H, Baratang N, et al. Mutations in fibronectin cause a subtype of spondylometaphyseal dysplasia with “Corner Fractures”[J]. Am J Hum Genet, 2017, 101(5):815-823. [9] Cadoff EB, Sheffer R, Wientroub S, et al. Mechanistic insights into the cellular effects of a novel FN1 variant associated with a spondylometaphyseal dysplasia[J]. Clinical Genetics, 2018, 94(5):429-437. [10] Hanley PC, Kanwar HS, Martineau C, et al. Short stature is progressive in patients with heterozygous NPR2 mutations[J]. J Clin Endocrinol Metab, 2020,105(10):3190-3202. [11] Krejci P, Masri B, Fontaine V, et al. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis[J]. J Cell Sci, 2005, 118(Pt 21):5089-5100. [12] Shuhaibar LC, Robinson JW, Vigone G, et al. Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor[J]. Elife, 2017, 6:e31343. [13] Ke X, Liang H, Miao H, et al. Clinical characteristics of short-stature patients with an NPR2 mutation and the therapeutic response to rhGH[J]. J Clin Endocrinol Metab, 2021, 106(2):431-441. [14] Hisado-Oliva A, Ruzafa-Martin A, Sentchordi L, et al. Mutations in C-natriuretic peptide (NPPC):A novel cause of autosomal dominant short stature[J]. Genet Med, 2018, 20(1):91-97. [15] Wendt DJ, Dvorak-Ewell M, Bullens S, et al. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism[J]. J Pharmacol Exp Ther, 2015, 353(1):132-149. [16] Huckert M, Stoetzel C, Morkmued S, et al. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta[J]. Hum Mol Genet, 2015, 24(11):3038-3049. [17] Stanley S, Balic Z, Hubmacher D. Acromelic dysplasias:how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins[J]. Ann N Y Acad Sci, 2021, 1490(1):57-76. [18] Dabovic B, Chen Y, Colarossi C, et al. Bone abnormalities in latent TGF-[beta] binding protein (Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating TGF-[beta] bioavailability[J]. J Cell Biol, 2002, 156(2):227-232. [19] McInerney-Leo AM, Le Goff C, Leo PJ, et al. Mutations in LTBP3 cause acromicric dysplasia and geleophysic dysplasia[J]. J Med Genet, 2016, 53(7):457-464. [20] Guo DC, Regalado ES, Pinard A, et al. LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections[J]. Am J Hum Genet, 2018, 102(4):706-712. [21] Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders[J]. Biochim Biophys Acta, 2014, 1842(6):769-778. [22] Isidor B, Geffroy L, de Courtivron B, et al. A new form of severe spondyloepimetaphyseal dysplasia:clinical and radiological characterization[J]. Am J Med Genet A, 2013, 161A(10):2645-2651. [23] Le Caignec C, Ory B, Lamoureux F, et al. RPL13 variants cause spondyloepimetaphyseal dysplasia with severe short stature[J]. Am J Hum Genet, 2019, 105(5):1040-1047. [24] Costantini A, Alm JJ, Tonelli F, et al. Novel RPL13 variants and variable clinical expressivity in a human ribosomopathy with spondyloepimetaphyseal dysplasia[J]. J Bone Miner Res, 2021, 36(2):283-297. [25] Witting KF, Mulder MPC. Highly specialized ubiquitin-like modifications:Shedding light into the UFM1 enigma[J]. Biomolecules, 2021, 11(2):255. [26] Di Rocco M, Rusmini M, Caroli F, et al. Novel spondyloepimetaphyseal dysplasia due to UFSP2 gene mutation[J]. Clinical Genetics, 2018, 93(3):671-674. [27] Zhang G, Tang S, Wang H, et al. UFSP2-related spondyloepimetaphyseal dysplasia:A confirmatory report[J]. Eur J Med Genet, 2020, 63(11):104021. [28] Rice SJ, Beier F, Young DA, et al. Interplay between genetics and epigenetics in osteoarthritis[J]. Nat Rev Rheumatol, 2020, 16(5):268-281. [29] Widmann M, Niess AM, Munz B. Physical exercise and epigenetic modifications in skeletal muscle[J]. Sports Med, 2019, 49(4):509-523. [30] Ambros V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006):350-355. [31] Grigelioniene G, Suzuki HI, Taylan F, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia[J]. Nat Med, 2019, 25(4):583-590. [32] Papaioannou G, Mirzamohammadi F, Lisse TS, et al. MicroRNA-140 provides robustness to the regulation of hypertrophic chondrocyte differentiation by the PTHrP-HDAC4 pathway[J]. J Bone Miner Res, 2015, 30(6):1044-1052. [33] Qiu Y, Huang S. CTCF-mediated genome organization and leukemogenesis[J]. Leukemia, 2020, 34(9):2295-2304. [34] Xiang JF, Corces VG. Regulation of 3D chromatin organization by CTCF[J]. Curr Opin Genet Dev, 2021, 67:33-40. [35] Nora EP, Caccianini L, Fudenberg G, et al. Molecular basis of CTCF binding polarity in genome folding[J]. Nat Commun, 2020, 11(1):5612. [36] Jia Z, Li J, Ge X, et al. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection[J]. Genome Biol, 2020, 21(1):75. [37] Tai PWL, Wu H, van Wijnen AJ, et al. Genome-wide DNase hypersensitivity, and occupancy of RUNX2 and CTCF reveal a highly dynamic gene regulome during MC3T3 pre-osteoblast differentiation[J]. PLoS One, 2017, 12(11):e0188056. [38] Min H, Kim HP, Shin JO. Depletion of CTCF induces craniofacial malformations in mouse embryos[J]. Am J Transl Res, 2019, 11(9):6102-6109. [39] Chen F, Yuan H, Wu W, et al. Three additional de novo CTCF mutations in Chinese patients help to define an emerging neurodevelopmental disorder[J]. Am J Med Genet C Semin Med Genet, 2019, 181(2):218-225. [40] Li Y, Haarhuis JHI, Sedeno Cacciatore A, et al. The structural basis for cohesin-CTCF-anchored loops[J]. Nature, 2020, 578(7795):472-476. |