Chinese Journal of Child Health Care ›› 2023, Vol. 31 ›› Issue (5): 521-525.DOI: 10.11852/zgetbjzz2022-1082
• Review • Previous Articles Next Articles
LIU Jiamin, ZHAO Sha, ZHONG Yan
Received:
2022-09-05
Revised:
2023-02-03
Online:
2023-05-10
Published:
2023-05-06
Contact:
ZHONG Yan, E-mail:zhongyan@163.com
刘佳敏, 赵莎, 钟燕
通讯作者:
钟燕,E-mail:zhongyan@163.com
作者简介:
刘佳敏(1997-),女,湖南人,在读硕士研究生,主要研究方向为儿童保健。
基金资助:
CLC Number:
LIU Jiamin, ZHAO Sha, ZHONG Yan. Research advance on exosomes and neuropsychiatric disorders in children[J]. Chinese Journal of Child Health Care, 2023, 31(5): 521-525.
刘佳敏, 赵莎, 钟燕. 外泌体与儿童神经精神障碍的研究进展[J]. 中国儿童保健杂志, 2023, 31(5): 521-525.
[1] O'brien K, Breyne K, Ughetto S, et al.RNA delivery by extracellular vesicles in mammalian cells and its applications[J].Nat Rev Mol Cell Biol, 2020, 21(10): 585-606. [2] Van Niel G, D'angelo G, Raposo G.Shedding light on the cell biology of extracellular vesicles[J].Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. [3] 朱梦梅, 林佳莉, 王楚棋, 等.治疗性外泌体的研究进展[J].药学学报, 2022, 57(3): 627-637. Zhu MM, Lin JL, Wang CQ, et al.Research progress of therapeutic exosomes[J].ActaPharmaceutica Sinica, 2022, 57(3): 627-637.(in Chinese) [4] 单政铭, 陶述春, 胡春梅, 等.人脐带间充质干细胞来源外泌体的提取、鉴定和蛋白组学分析[J].中国组织工程研究, 2022, 26(19): 3036-3042. Dan ZM, Tao CS, Hu CM, et al.Extraction, identification and proteomic analysis of exosomes derived from human umbilical cord mesenchymal stem cells[J].Chinese Journal of Tissue Engineering Research, 2022, 26(19): 3036-3042.(in Chinese) [5] 夏凡.小肠上皮组织外泌体提取与鉴定及功能研究 [D].南京:南京医科大学, 2019. Xia F.Isolation and identification of exosomes and their physiological functions[D].Nanjing:Nanjing Medical University, 2019.(in Chinese) [6] Kalluri R, Lebleu VS.The biology, function, and biomedical applications of exosomes[J].Science, 2020, 367(6478):eaau6977. [7] 毕焕焕.支气管肺泡灌洗液外泌体miRNA在非小细胞肺癌诊断中的初步研究[D].青岛:青岛大学, 2021. Bi HH.A preliminary study of bronchoalveolar lavage fluid exosomal miRNAs in the diagnosis of non-small cell lung cancer[D].Qingdao:Qingdao University, 2021.(in Chinese) [8] He C, Zheng S, Luo Y, et al.Exosome theranostics: Biology and translational medicine[J].Theranostics, 2018, 8(1): 237-255. [9] Larios J, Mercier V, Roux A, et al.ALIX- and ESCRT-Ⅲ-dependent sorting of tetraspanins to exosomes[J].J Cell Biol, 2020, 219(3):e201904113. [10] Hou K, Li G, Zhao J, et al.Bone mesenchymal stem cell-derived exosomal microrna-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the pten-mediated akt signaling pathway[J].J Neuroinflammation, 2020, 17(1): 46. [11] Xu L, Ji H, Jiang Y, et al.Exosomes derived from circakap7-modified adipose-derived mesenchymal stem cells protect against cerebral ischemic injury[J].Front Cell Dev Biol, 2020, 8: 569977. [12] Hannafon BN, Trigoso YD, Calloway CL, et al.Plasma exosome micrornas are indicative of breast cancer[J].Breast Cancer Res, 2016, 18(1): 90. [13] 刘蜜, 向田, 李叶静, 等.血液mirna-548ah在慢性乙型肝炎病毒感染不同时期的表达及其临床价值[J].中华实验和临床感染病杂志(电子版), 2021, 15(5): 337-343. Liu M, Xiang T, Li YJ, et al.Expression of microRNA548ah in blood at different stages of chronic hepatitis B virus infection and its clinical value[J].Chin J Exp Clin Infect Dis (Electronic Edition), 2021, 15(5): 337-343.(in Chinese) [14] Korkut C, Li Y, Koles K, et al.Regulation of postsynaptic retrograde signaling by presynaptic exosome release[J].Neuron, 2013, 77(6): 1039-1046. [15] Korkut C, Ataman B, Ramachandran P, et al.Trans-synaptic transmission of vesicular wnt signals through evi/wntless[J].Cell, 2009, 139(2): 393-404. [16] Sharma P, Mesci P, Carromeu C, et al.Exosomes regulate neurogenesis and circuit assembly[J].Proc Natl Acad SciUSA,2019,116(32): 16086-16094. [17] Li W, Wang S, He H, et al.Expression and function of Ndel1 during the differentiation of neural stem cells induced by hippocampal exosomesticle[J].Stem Cell Res Ther, 2021, 12(1): 51. [18] Leng F, Edison P.Neuroinflammation and microglial activation in alzheimer disease: Where do we go from here?[J].Nat Rev Neurol, 2021, 17(3): 157-172. [19] Pritchard A, Tousif S, Wang Y, et al.Lung tumor cell-derived exosomes promote m2 macrophage polarization[J].Cells, 2020, 9(5):1303. [20] Xian P, Hei Y, Wang R, et al.Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J].Theranostics, 2019, 9(20): 5956-5975. [21] Dantzer R.Neuroimmune interactions: From the brain to the immune system and vice versa[J].Physiol Rev, 2018, 98(1): 477-504. [22] Segura E, Nicco C, Lombard B, et al.ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming[J].Blood, 2005, 106(1): 216-223. [23] Anel A, Gallego-Lleyda A, De Miguel D, et al.Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease[J].Cells, 2019, 8(2):154. [24] Tavasolian F, Hosseini AZ, Rashidi M, et al.The impact of immune cell-derived exosomes on immune response initiation and immune system function[J].Curr Pharm Des, 2021, 27(2): 197-205. [25] Lord C, Elsabbagh M, Baird G, et al.Autism spectrum disorder[J].Lancet, 2018, 392(10146): 508-520. [26] Kodak T, Bergmann S.Autism spectrum disorder: Characteristics, associated behaviors, and early intervention[J].Pediatr Clin North Am, 2020, 67(3): 525-535. [27] Zhubi A, Chen Y, Guidotti A, et al.Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects[J].Int J Dev Neurosci, 2017, 62: 63-72. [28] Saxena R, Babadi M, Namvarhaghighi H, et al.Role of environmental factors and epigenetics in autism spectrum disorders[J].Prog Mol Biol Transl Sci, 2020, 173: 35-60. [29] Siniscalco D, Schultz S, Brigida AL, et al.Inflammation and neuro-immune dysregulations in autism spectrum disorders[J].Pharmaceuticals (Basel), 2018, 11(2):56. [30] Gevezova M, Sarafian V, Anderson G, et al.Inflammation and mitochondrial dysfunction in autism spectrum disorder[J].CNS Neurol Disord Drug Targets, 2020, 19(5):320-323. [31] Tsilioni I, Theoharides TC.Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete il-1beta[J].J Neuroinflammation, 2018, 15(1): 239. [32] Perets N, Hertz S, London M, et al.Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of btbr mice[J].Mol Autism, 2018, 9: 57. [33] Perets N, Oron O, Herman S, et al.Exosomes derived from mesenchymal stem cells improved core symptoms of genetically modified mouse model of autism shank3b[J].Mol Autism, 2020, 11(1): 65. [34] Tomasik J, Rahmoune H, Guest PC, et al.Neuroimmune biomarkers in schizophrenia[J].Schizophr Res, 2016, 176(1): 3-13. [35] Richetto J, Meyer U.Epigenetic modifications in schizophrenia and related disorders: Molecular scars of environmental exposures and source of phenotypic variability[J].Biol Psychiatry, 2021, 89(3): 215-226. [36] Amoah SK, Rodriguez BA, Logothetis CN, et al.Exosomal secretion of a psychosis-altered mirna that regulates glutamate receptor expression is affected by antipsychotics[J].Neuropsychopharmacology, 2020, 45(4): 656-665. [37] Du Y, Yu Y, Hu Y, et al.Genome-wide, integrative analysis implicates exosome-derived microrna dysregulation in schizophrenia[J].Schizophr Bull, 2019, 45(6): 1257-1266. [38] Tan G, Wang L, Liu Y, et al.The alterations of circular rna expression in plasma exosomes from patients with schizophrenia[J].J Cell Physiol, 2021, 236(1): 458-467. [39] Lee EE, Winston-Gray C, Barlow JW, et al.Plasma levels of neuron- and astrocyte-derived exosomal amyloid beta1-42, amyloid beta1-40, and phosphorylated tau levels in schizophrenia patients and non-psychiatric comparison subjects: Relationships with cognitive functioning and psychopathology[J].Front Psychiatry, 2020, 11: 532624. [40] Ranganathan M, Rahman M, Ganesh S, et al.Analysis of circulating exosomes reveals a peripheral signature of astrocytic pathology in schizophrenia[J].World J Biol Psychiatry, 2022, 23(1): 33-45. [41] Guo C, Li J, Guo M, et al.Aberrant expressions of MIAT and PVT1 in serum exosomes of schizophrenia patients[J].Schizophr Res, 2022, 240: 71-72. [42] Du Y, Chen L, Li XS, et al.Metabolomic identification of exosome-derived biomarkers for schizophrenia: A large multicenter study[J].Schizophr Bull, 2021, 47(3): 615-623. [43] Guerrini R, Marini C, Barba C.Generalized epilepsies[J].Handb Clin Neurol, 2019, 161: 3-15. [44] Wei N, Zhang H, Wang J, et al.The progress in diagnosis and treatment of exosomes and micrornas on epileptic comorbidity depression[J].Front Psychiatry, 2020, 11: 405. [45] Stern JS.Tourette's syndrome and its borderland[J].Pract Neurol, 2018, 18(4): 262-270. [46] Efron D, Dale RC.Tics and tourette syndrome[J].J Paediatr Child Health, 2018, 54(10): 1148-1153. [47] Hartmann A, Worbe Y.Tourette syndrome: Clinical spectrum, mechanisms and personalized treatments[J].Curr Opin Neurol, 2018, 31(4): 504-509. [48] Hsu CJ, Wong LC, Lee WT.Immunological dysfunction in tourette syndrome and related disorders[J].Int J Mol Sci, 2021, 22(2):853. |
[1] | LI Jia, ZHANG Yanchi. Research advances on the correlation of gene polymorphisms of vitamin D receptor and vitamin D level with neurodevelopmental disorders in children [J]. Chinese Journal of Child Health Care, 2023, 31(5): 516-520. |
[2] | XIA Zhenglong, SONG Yanyan. Research progress in the neurodevelopment of preterm infants with bronchopulmonary dysplasia [J]. Chinese Journal of Child Health Care, 2023, 31(4): 390-394. |
[3] | WANG Na, LI Xiaoying. Progress in neurodevelopmental assessment of premature infants [J]. Chinese Journal of Child Health Care, 2023, 31(4): 404-407. |
[4] | HUANG Heng-ye, YU Guang-jun. Review of diagnostic scales for the assessment of early neurodevelopment in infants and toddlers [J]. Chinese Journal of Child Health Care, 2023, 31(2): 162-166. |
[5] | SHEN Xiu-shu, WANG Jun. Research progress in clinical application of general movement assessment [J]. Chinese Journal of Child Health Care, 2023, 31(2): 167-170. |
[6] | CHEN Yi-ru, CHEN Wen-xiong. Research progress in neurodevelopmental disorder caused by KIF5C gene mutation [J]. Chinese Journal of Child Health Care, 2023, 31(2): 171-175. |
[7] | MEI Lian-ni, HU Chun-chun, XU Qiong. Progress in drug therapy for fragile X syndrome [J]. Chinese Journal of Child Health Care, 2023, 31(2): 180-184. |
[8] | CAO Bing-bing, LIN Duo-hua, DU Pei-zhen, YAN Tao, CHENG Jian-ting. Correlation of various laboratory indicators and the expression level of inflammatory factors with neurodevelopment of newborns [J]. Chinese Journal of Child Health Care, 2023, 31(2): 205-209. |
[9] | CHEN Yu-xia, LIU Hua-yan, FAN Qian-qian. Changes of neuron specific enolase, transcutaneous hour bilirubin, total bilirubin/albumin levels in full-term infants with hyperbilirubinemia and their correlation with long-term neurodevelopment [J]. Chinese Journal of Child Health Care, 2023, 31(1): 86-90. |
[10] | WANG Hui-ping, WANG Li, GAO Qiong, BAI Bo-liang, MA Ying-jun. Physical and neurological development of necrotizing enterocolitis in very low birth weight infants [J]. Chinese Journal of Child Health Care, 2023, 31(1): 96-100. |
[11] | WANG Juan, ZONG Lu. Effects of exosomes derived from stem cells on the movement of premature rats [J]. Chinese Journal of Child Health Care, 2022, 30(5): 504-508. |
[12] | XIE Shu, LIU Yu, LI De-xin, LI Ling, ZOU Ming-yang, SUN Cai-hong. Research progress in the regulation of endocannabinoid system on abnormal neuroinflammation in autism spectrum disorder [J]. Chinese Journal of Child Health Care, 2022, 30(4): 392-395. |
[13] | ZHANG Hong-mei, JIA Mei-xiang, LI Su-shui, XUE Man, SUN Zhi-gang. Research progress on the relationship between microRNA and neuropsychiatric disorders in children [J]. Chinese Journal of Child Health Care, 2022, 30(3): 276-280. |
[14] | ZHANG Yi-min, JIN He-yue, TAO Fang-biao, ZHU Yu-min. Research progress in adverse neurodevelopmental outcomes of moderate or late preterm infants [J]. Chinese Journal of Child Health Care, 2022, 30(11): 1198-1202. |
[15] | CAO Mi, ZHANG Jun, ZHANG Dan, YANG Xin-yi. Research progress on the influencing factors of neurodevelopment in preterm infants from socio-ecological perspective [J]. Chinese Journal of Child Health Care, 2022, 30(11): 1203-1207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||