[1]Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease[J]. Annu Rev Pathol, 2008, 3: 427-455.
[2]Murrow L, Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease[J]. Annu Rev Pathol, 2013, 8:105-137.
[3]Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion [J]. Nature, 2008,451(7182): 1069-1075.
[4]Yang Q, Guan KL. Expanding mTOR signaling[J]. Cell Res, 2007,17(8): 666-681.
[5]李乐兴,戴汉川.细胞自噬调控的分子机制研究进展[J].中国细胞生物学学报,2015,37(2):263-270.
[6]Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015,125(1): 25-32.
[7]Wu YT, Tan HL, Shui G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase[J]. J Biol Chem, 2010, 285(14): 10850-10861.
[8]F OF, Rusten TE, Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy[J]. FEBS J, 2013, 280(24): 6322-6337.
[9]Shanware NP, Bray K, Abraham RT. The PI3K, metabolic, and autophagy networks: interactive partners in cellular health and disease[J]. Annu Rev Pharmacol Toxicol, 2013, 53: 89-106.
[10]Dinner S, Platanias LC. Targeting the mTOR Pathway in Leukemia[J]. J Cell Biochem, 2016, 117(8): 1745-1752.
[11]Li X, Wu C, Chen N, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma[J]. Oncotarget, 2016, 7(22): 33440-33450.
[12]Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment[J]. Cancer Metastasis Rev, 2016,35(4):515-524.
[13]Chen R, Duan J, Li L, et al. mTOR promotes pituitary tumor development through activation of PTTG1[J]. Oncogene, 2017, 36(7):979-988.
[14]Rodon J, Brana I, Siu LL, et al. Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors[J]. Invest New Drugs, 2014,32(4): 670-681.
[15]Ihle NT, Williams R, Chow S, et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling[J]. Mol Cancer Ther, 2004,3(7):763-772.
[16]Civallero M, Cosenza M, Pozzi S, et al. Activity of BKM120 and BEZ235 against lymphoma cells[J]. Biomed Res Int, 2015: 870918-870930.
[17]Pal SK,Reckamp K,Yu H,et al.Akt inhibitors in clinical development for the treatment of cancer[J].Expert Opin Investig Drugs,2010,19(11):1355-1366.
[18]Zhao YY, Tian Y, Zhang J, et al. Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer in vitro and in vivo[J]. Drug Des Devel Ther, 2014, 8: 1827-1837.
[19]Cani A, Simioni C, Martelli AM, et al. Triple Akt inhibition as a new therapeutic strategy in T-cell acute lymphoblastic leukemia[J]. Oncotarget, 2015, 6(9): 6597-6610.
[20]Song X, Kim SY, Zhang L, et al. Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer[J]. Cell Death Dis, 2014, 5: e1504.
[21]Feldman ME, Shokat KM. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs)[J]. Curr Top Microbiol Immunol, 2010, 347: 241-262.
[22]Suangtamai T, Tanyong DI. Diallyl disulfide induces apoptosis and autophagy via mTOR pathway in myeloid leukemic cell line[J]. Tumour Biol, 2016, 37(8):10993-10999.
[23]Hu M, Huang H, Zhao R, et al. AZD8055 induces cell death associated with autophagy and activation of AMPK in hepatocellular carcinoma[J]. Oncol Rep, 2014, 31(2):649-656.
[24]Yongxi T, Haijun H, Jiaping Z, et al. Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo[J]. Biochem Biophys Res Commun, 2015, 465(3): 494-500.
[25]Rodrik-Outmezguine VS, Okaniwa M, Yao Z, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor[J]. Nature, 2016, 534(7606): 272-276.
[26]Mazan-Mamczarz K, Peroutka RJ, Steinhardt JJ, et al. Distinct inhibitory effects on mTOR signaling by ethanol and INK128 in diffuse large B-cell lymphoma[J]. Cell Commun Signal, 2015, 13: 1-15.
[27]Ghosh J,Kapur R.Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia[J].Exp Hematol,2017,50:13-21.
[28]Chan EY, Longatti A, McKnight NC, et al. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism[J]. Mol Cell Biol, 2009, 29(1):157-171.
[29]Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells[J]. J Cell Biol, 2008, 181(3):497-510.
[30]Nishimura T, Kaizuka T, Cadwell K, et al. FIP200 regulates targeting of Atg16L1 to the isolation membrane[J]. EMBO Rep, 2013, 14(3): 284-291.
[31]付婉, 董笛, 赵颖. 自噬的相关分子机制[J]. 中国生物化学与分子生物学报, 2017, 33(5): 448-455.
[32]Jung CH,Jun CB,Ro SH,et al.ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery[J].Mol Biol Cell,2009,20(7):1992-2003.
[33]Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011,13(2): 132-141.
[34] Pasquier B, Autophagy inhibitors[J]. Cell Mol Life Sci, 2016, 73(5): 985-1001.
[35]Petherick KJ,Conway OJ,Mpamhanga C,et al.Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin(mTOR)-dependent autophagy[J].J Biol Chem,2015,290(18):11376-11383.
[36]Egan DF, Chun MG, Vamos M, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates [J]. Mol Cell, 2015, 59(2): 285-297.
[37]Mei Y,Glover K,Su M,et al.Conformational flexibility of BECN1:Essential to its key role in autophagy and beyond[J].Protein Sci,2016,25(10):1767-1785.
[38]Fu LL, Cheng Y, Liu B. Beclin-1: autophagic regulator and therapeutic target in cancer[J]. Int J Biochem Cell Biol, 2013, 45(5): 921-924.
[39]Sinha S, Levine B. The autophagy effector Beclin 1: a novel BH3-only protein[J]. Oncogene, 2008, 27( Suppl 1): S137-148.
[40]Sun Q,Fan W,Chen K,et al.Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase[J].Proc Natl Acad Sci USA,2008,105(49):19211-19216.
[41]Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG[J]. Nat Cell Biol, 2006, 8(7): 688-699.
[42]Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein[J]. Cell Res, 2007,17(10): 839-849.
[43]Wirawan E, Lippens S, Vanden Berghe T, et al. Beclin1: a role in membrane dynamics and beyond[J]. Autophagy, 2012, 8(1): 6-17.
[44]Sun Q, Fang W, Zhong Q. Regulation of Beclin 1 in autophagy[J]. Autophagy, 2009,5(5): 713-716.
[45]Liang C, Feng P, Ku B, et al. UVRAG: A new player in autophagy and tumor cell growth. Autophagy, 2014, 3(1): 69-71.
[46]Liang C, Lee JS, Inn KS, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking[J]. Nat Cell Biol, 2008, 10(7): 776-787.
[47]Lindqvist LM, Heinlein M, Huang DC, et al. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak[J]. Proc Natl Acad Sci U S A, 2014, 111(23): 8512-8517.
[48] Jung YY,Lee YK,Koo JS.The potential of Beclin 1 as a therapeutic target for the treatment of breast cancer[J].Expert Opin Ther Targets,2016,20(2):167-178.
[49]Malik SA, Orhon I, Morselli E, et al. BH3 mimetics activate multiple pro-autophagic pathways[J]. Oncogene, 2011,30(37): 3918-3929.
[50]Hoyer-Hansen M, Bastholm L, Mathiasen IS, et al. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death[J]. Cell Death Differ, 2005, 12(10): 1297-1309.
[51]Lian J, Wu X, He F, et al. A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum[J]. Cell Death and Differentiation, 2010,18(1): 60-71.
[52]Tang B, Dong X, Wei Z, et al. Enhanced autophagy by everolimus contributes to the antirestenotic mechanisms in vascular smooth muscle cells[J]. J Vasc Res, 2014, 51(4):259-268.
[53]Kim DE, Kim Y, Cho DH, et al. Raloxifene induces autophagy-dependent cell death in breast cancer cells via the activation of AMP-activated protein kinase[J]. Mol Cells, 2015, 38(2): 138-144.
[54]Shao S, Li S, Qin Y, et al. Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia[J]. Int J Oncol, 2014,44(5):1661-1668.
[55]Vicencio JM, Ortiz C, Criollo A, et al. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1[J]. Cell Death Differ, 2009, 16(7):1006-1017.
[56]Tanida I, Autophagy basics[J]. Microbiol Immunol, 2011, 55(1): 1-11.
[57]Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis[J]. Cell Res, 2014, 24(1):58-68.
[58]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. Embo j, 2000, 19(21): 5720-5728.
[59]Fujita N, Itoh T, Omori H, et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy[J]. Mol Biol Cell, 2008, 19(5): 2092-2100.
[60]Sakoh-Nakatogawa M, Matoba K, Asai E, et al. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site[J]. Nat Struct Mol Biol, 2013, 20(4):433-439.
[61]Dooley HC, Razi M, Polson HE, et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1[J]. Mol Cell, 2014, 55(2):238-252.
[62]Martinez J, Cunha LD, Park S, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells[J]. Nature, 2016, 533(7601): 115-119.
[63]Lin X, Li S, Zhao Y, et al. Interaction domains of p62: a bridge between p62 and selective autophagy[J]. DNA Cell Biol, 2013,32(5): 220-227.
[64]Lippai M, Low P.The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy[J]. Biomed Res Int, 2014, 2014: 832704-832715.
[65]Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33): 24131-24145.
[66]Duran A, Amanchy R, Linares JF, et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway[J]. Mol Cell, 2011, 44(1): 134-146.
[67]Linares JF, Duran A, Reina-Campos M, et al. Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade[J]. Cell Rep, 2015, 12(8): 1339-1352. |