[1]Chen W, Zheng R, Baade PD, et al. Cancer Statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]Saito T, Yokosuka T, Hashimoto-Tane A. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters[J]. FEBS Lett, 2010, 584(24):4865-4871.
[3]Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion [J]. Science, 2011, 331(6024):1565-1570.
[4]Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy [J]. J Drug Target, 2018, 20:1-13.
[5]Liu B, Song Y, Liu D. Recent development in clinical applications of PD-1 and PD-L1 antibodies for cancer immunotherapy[J]. J Hematol Oncol, 2017, 10(1):174.
[6]Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death [J]. EMBO J, 1992, 11(11): 3887-3895.
[7]Sidorenko SP , Clark EA. The dual-function CD150 receptor subfamily: the viral attraction[J]. Nat Immunol, 2003, 4(1):19-24.
[8]Pedoeem A, Azoulay-Alfaguter I, Strazza M, et al. Programmed death-1 pathway in cancer and autoimmunity[J].Clin Immunol , 2014, 153(1):145-152.
[9]Fife BT, Pauken KE, Eagar TN, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal[J]. Nat Immunol, 2009, 10(11):1185-1192.
[10]Dai S, Jia R, Zhang X, et al. The PD-1/PD-Ls pathway and autoimmune diseases[J]. Cell Immunol, 2014, 290(1):72-79.
[11]Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of Nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer[J]. J Clin Oncol, 2015, 33(18):2004-2012.
[12]Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancer, 2017, 390(10111):2461-2471.
[13]El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088):2492-2502.
[14]Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9):1182-1191.
[15]Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med, 2018, 378(14):1277-1290.
[16]Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden [J]. N Engl J Med, 2018, 378(22):2093-2104.
[17]Grimm MO, Oppel-Heuchel H, Foller S , et al. Treatment with PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors : Immune-mediated side effects[J]. Urologe A, 2018, 57(5):543-551.
[18]Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial[J]. Lancet Oncol, 2016, 17(6):717-726.
[19]Falchi L, Sawas A, Deng C, et al. High rate of complete responses to immune checkpoint inhibitors in patients with relapsed or refractory hodgkin lymphoma previously exposed to epigenetic therapy[J]. J Hematol Oncol, 2016, 9(1):132.
[20]Saito H, Kono Y, Murakami Y, et al. Highly activated PD-1/PD-L1 pathway in gastric cancer with PD-L1 expression [J]. Anticancer Res, 2018, 38(1):107-112.
[21]Jung HI, Jeong D, Ji S, et al. Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma[J]. Cancer Res Treat, 2017, 49(1):246-254.
[22]Yagi T, Baba Y, Ishimoto T, et al. PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer [J]. Ann Surg, 2017, dol:10.1097/SLA.0000000000002616.
[23]Valentini AM, Di Pinto F, Cariola F, et al. PD-L1 expression in colorectal cancer defines three subsets of tumor immune microenvironments[J]. Oncotarget, 2018, 9(9):8584-8596.
[24]Torre LA, Bray F, Sieqel RL, et al. Global cancer statistics,2012[J].CA Cancer J Clin, 2015, 65(2):87-108.
[25]Long J, Lin J, Wang A, et al. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy[J]. J Hematol Oncol, 2017, 10(1):146.
[26]Mazzolini GD, Malvicini M. Immunostimulatory monoclonal antibodies for hepatocellular carcinoma therapy. trends and perspectives[J]. Medicina (B Aires), 2018, 78(1):29-32.
[27]Yunching Chen, Ramjiawan RR, Thomas Reiberger, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-PD-1 immunotherapy in sorafenib-treated HCC in mice[J]. Hepatology, 2015, 61(5):1591-1602.
[28]Moris D, Rahnemai-Azar AA, Zhang X, et al. Program death-1 immune checkpoint and tumor microenvironment in malignant liver tumors[J]. Surg Oncol, 2017, 26(4):423-430.
[29]Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma[J]. Lancet, 2013, 381(9864):400-412.
[30]Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes[J]. Nature, 2013, 499(7457):214-218.
[31]Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J].Science, 2015, 348(6230):124-128.
[32]Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer[J]. Clin Cancer Res, 2005, 11(8):2947-2953.
[33]Doi T, Piha-Paul SA, Jalal SI, et al. Safety and antitumor activity of the anti-programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma[J]. J Clin Oncol, 2018, 36(1):61-67.
[34]Kudo T, Hamamoto Y, Kato K, et al. Nivolumab treatment for oesophageal squamous-cell carcinoma: an open-label, multicentre, phase 2 trial[J]. Lancet Oncol, 2017, 18(5):631-639.
[35]Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon[J]. Science, 1993, 260(5109):816-819.
[36]Diaz LA, Le DT. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 373(20):1979.
[37]Lin AY, Lin E. Programmed death 1 blockade, an achilles heel for MMR-deficient tumors[J]. J Hematol Oncol, 2015, 8:124.
[38]Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer[J].Lancet, 2016,388(10039):73-85.
[39]Feng M, Xiong G, Cao Z , et al. PD-1/PD-L1 and immunotherapy for pancreatic cancer[J]. Cancer Lett, 2017, 407:57-65.
[40]Soares KC, Rucki AA, Wu AA, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors[J]. J Immunother, 2015, 38(1): 1-11.
[41]Zhou NX, Huang ZQ, Zhang WZ, et al. The comprehensive analysis of the clinical classification,surgical methods and long term effects of 402 cases of hilar cholangiocarcinoma[J]. Chin J Surg, 2006, 44(23):1599 -1603.
[42]刘谋泽, 李浩, 张伟. 肝内胆管癌病理机制表观基因组学研究进展[J].中国临床药理学与治疗学, 2014, 19(11):1294-1298.
[43]Gani F, Nagarajan N, Kim Y, et al. Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma[J]. Ann Surg Oncol, 2016, 23(8):2610-2617.
[44]Ye Y, Zhou L, Xie X, et al. Interaction of B7-H1 on intrahepatic cholangiocarcinoma cells with PD-1 on tumor-infiltrating T cells as a mechanism of immune evasion[J]. J Surg Oncol, 2009, 100(6):500-504. |