[1]Gordon S. Elie Metchnikoff, the man and the myth[J]. J Innate Immun, 2016, 8(3): 223-227.
[2]Lee CH, Choi EY. Macrophages and inflammation[J]. J Rhrum Dis, 2018, 25(1): 11-18.
[3]Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res, 2016, 118(4): 653-667.
[4]Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors[J]. Nature, 2015, 518(7540): 547-551.
[5]夏园, 乔建林, 曾令宇. 组织固有巨噬细胞的研究进展[J]. 细胞与分子免疫学杂志, 2016, 32(7): 996-999.
[6]Hamidzadeh K, Christensen SM, Dalby E, et al. Macrophages and the recovery from acute and chronic inflammation[J]. Annu Rev Physiol, 2017, 79(1): 567-592.
[7]Mossanen JC, Krenkel O, Ergen C, et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen induced acute liver injury[J]. Hepatology, 2016, 64(5): 1667-1682.
[8]Puengel T, Tacke F. Repair macrophages in acute liver failure[J]. Gut, 2017, 67(2): 202-203.
[9]白杨, 杨勇. 肝脏相关巨噬细胞起源及发育分化研究进展[J]. 药学研究, 2018, 37(1): 50-52.
[10]Gao B. Basic liver immunology[J]. Cell Mol Immunol, 2016, 13(3): 265-266.
[11]Sun YY, Li XF, Meng XM, et al. Macrophage phenotype in liver injury and repair[J]. Scand J Immunol, 2017, 85(3): 166-174.
[12]Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455.
[13]Cassado ADA, Lima MRDI, Bortoluci KR. Revisiting mouse peritoneal macrophages: Heterogeneity, development, and function[J]. Front Immunol, 2015, 6: 225.
[14]Wijesundera KK, Izawa T, Tennakoon AH, et al. M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3[J]. Exp Mol Pathol, 2014, 96(3): 382-392.
[15]Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury[J]. J Immunol, 2014, 193(1): 344-353.
[16]宛硕, 黄艳, 陈庭金, 等. 巨噬细胞极化的研究进展[J]. 中国病原生物学杂志, 2015, 10(11): 1051-1054.
[17]Dixon LJ, Barnes M, Tang H, et al. Kupffer cells in the liver[J]. Compr Physiol, 2013, 3(2): 785-797.
[18]Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function[J]. J Enzymol Metab, 2015, 1(1): 101.
[19]Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Pathol, 2012, 229(2): 176-185.
[20]Shuang W, Meng XM, Ng YY, et al. TGF-β/Smad3 signalling regulates the transition of bone marrowderived macrophages into myofibroblasts during tissue fibrosis[J]. Oncotarget, 2016, 7(8): 8809-8822.
[21]Stables MJ, Shah S, Camon EB, et al. Transcriptomic analyses of murine resolution-phase macrophages[J]. Blood, 2011, 118(26): e192-e208.
[22]Ramachandran P, Pellicoro A, Vernon MA, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis[J]. Proc Natl Acad Sci U S A, 2012, 109(46): 3186-3195.
[23]Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease[J]. J Hepatol, 2013, 58(2): 395-398.
[24]Mandrekar P, Ambade A, Lim A, et al. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice[J]. Hepatology, 2011, 54(6): 2185-2197.
[25]Wang M, You Q, Lor K, et al. Chronic alcohol ingestion modulates hepatic macrophage populations and functions in mice[J]. J Leukoc Biol, 2014, 96(4): 657-665.
[26]Zhao YY, Yang R, Xiao M, et al. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues[J]. Toxicology, 2017, 390: 53-60.
[27]Lee J, French B, Morgan T, et al. The liver is populated by a broad spectrum of markers for macrophages. In alcoholic hepatitis the macrophages are M1 and M2[J]. Exp Mol Pathol, 2014, 96(1): 118-125.
[28]李丽萍, 邢欣, 王鹿, 等. 肝巨噬细胞在乙醇性脂肪肝发病过程中的作用研究进展[J]. 中国临床药理学杂志, 2017, 33(21): 2202-2205.
[29]娜日苏, 包纳日斯. 非酒精性脂肪肝的发病机制与流行病学的研究进展[J]. 中国医药指南, 2016, 14(3): 39-40.
[30]张云静, 宓余强. 非酒精性脂肪肝与肠道微生态的关系[J]. 肝脏, 2013, 18(5): 344-345.
[31]Reid DT, Reyes JL, McDonald BA, et al. Kupffer cells undergo fundamental changes during the development of experimental NASH and are critical in initiating liver damage and inflammation[J]. PLoS One, 2016, 11(7): e0159524.
[32]Luo W, Xu Q, Qi W, et al. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease[J]. Sci Rep, 2017, 7: 44612.
[33]王昭月, 卞兆连, 方一, 等. CCR2在非酒精性脂肪性肝炎中的表达及意义[J]. 肝脏, 2015, 20(5): 376-380.
[34]庄辉. 病毒性肝炎流行病学研究进展[J]. 中国继续医学教育, 2010, 2(3): 1-5.
[35]Chayama K, Hayes CN, Hiraga N, et al. Animal model for study of human hepatitis viruses[J]. J Gastroenterol Hepatol, 2011, 26(1): 13-18.
[36]Fangchao Y, Wenfeng Z, Di M, et al. Kupffer cell in the immune activation and tolerance toward HBV/HCV infection[J]. Adv Clin Exp Med, 2017, 26(4): 739-745.
[37]Gadd VL, Melino M, Roy S, et al. Portal, but not lobular, macrophages express matrix metalloproteinase-9: association with the ductular reaction and fibrosis in chronic hepatitis C[J]. Liver International, 2013, 33(4): 569-579.
[38]邢欣, 李丽萍, 王鹿, 等. 丙型病毒性肝炎中肝脏巨噬细胞的变化及作用[J]. 中国临床药理学与治疗学, 2017, 22(9): 1072-1076.
[39]Bility MT, Nio K, Li F, et al. Chronic hepatitis C infection-induced liver fibrogenesis is associated with M2 macrophage activation[J]. Sci Rep, 2016, 6: 39520.
[40]Ohtsuki T, Kimura K, Tokunaga Y, et al. M2 Macrophages play critical roles in progression of inflammatory liver disease in hepatitis C virus transgenic mice[J]. J Virol, 2016, 90(1): 300-307.
[41]Shrivastava S, Mukherjee A, Ray R, et al. Hepatitis C virus induces interleukin-1 beta (IL-1 beta)/IL-18 in circulatory and resident liver macrophages[J]. J Virol, 2013, 87(22): 12284-12290.
[42]Campana L, Iredale JP. Regression of liver fibrosis[J]. Semin Liver Dis, 2017, 37(1): 1.
[43]Wang Y, Shen RW, Han B, et al. Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats[J].World J Gastroenterol, 2017, 23(13): 2330-2336.
[44]Koyama Y, Brenner DA. Liver inflammation and fibrosis[J]. J Clin Invest, 2017, 127(1): 55-64.
[45]Locatelli L, Cadamuro M, Spirli C, et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis[J]. Hepatology, 2016, 63(3): 965-982.
[46]Braga TT, Agudelo JSH, Camara NOS. Macrophages during the fibrotic process: M2 as friend and foe[J]. Front Immunol, 2015, 6: 602.
[47]Clichici S, Olteanu D, Nagy AL, et al. Silymarin inhibits the progression of fibrosis in the early stages of liver injury in CCl4-treated rats[J]. J Med Food, 2015, 18(3): 290-298.
[48]Craig AJ, Labgaa I, Villacorta-Martin C, et al. Tumor heterogeneity and resistance to targeted therapies in hepatocellular carcinoma[M]//Resistance to molecular therapies for hepatocellular carcinoma. Springer, Cham, 2017: 1-24.
[49]Downey CM, Aghaei M, Schwendener RA, et al. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2'3'-cGAMP, induces M2 macrophage repolarization[J]. PLoS One, 2014, 9(6): e99988.
[50]Ringelhan M, Pfister D, O'Connor T, et al. The immunology of hepatocellular carcinoma[J]. Nat Immunol, 2018: 1.
[51]陈伟, 周赟, 龚建平. 肿瘤相关巨噬细胞在原发性肝癌发生发展中的作用[J]. 临床肝胆病杂志, 2016, 32(7): 1422-1424.
[52]Wan S, Kuo N, Kryczek I, et al. Myeloid cells in hepatocellular carcinoma[J]. Hepatology, 2015, 62(4): 1304-1312.
[53]Schrammen PL, Bartneck M, Mockel D, et al. CCL2-dependent monocyte recruitment contributes to a tumor-promoting microenvironment in a combined fibrosis-HCC model[J]. J Hepatol, 2017, 66(1): S633.
[54]Krenkel O, Puengel T, Govaere O, et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis[J]. Hepatology, 2018, 67(4): 1270-1283.
[55]Aoyama T, Inokuchi S, Brenner DA, et al. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice[J]. Hepatology, 2010, 52(4): 1390-1400.
[56]Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance[J]. Diabetes, 2010, 59(2): 347-357.
[57]艾雄飞, 杜丹玉, 孙立, 等. 靶向肿瘤相关巨噬细胞的治疗进展及风险[J]. 中国临床药理学与治疗学, 2016, 21(6): 697-702.
[58]Dapito DH, Mencin A, Gwak GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[J]. Cancer Cell, 2012, 21(4): 504-516.
[59]Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease[J]. Nat Rev Immunol, 2017, 17(5): 306-321.
[60]Loomba R, Lawitz E, Mantry PS, et al. GS-4997, an inhibitor of apoptosis signal-regulating kinase (ASK1), alone or in combination with simtuzumab for the treatment of nonalcoholic steatohepatitis (NASH): A randomized, phase 2 trial[J]. Hepatology, 2016, 64(6): 1119A-1120A.
[61]李校天, 尹燕, 郭永泽, 等. 1,25(OH)-2D-3干预IL-17及巨噬细胞炎性蛋白3α表达抑制大鼠肝纤维化形成的作用机制[J]. 临床肝胆病杂志, 2016, 32(12): 2331-2336.
[62]Negash AA, Ramos HJ, Crochet N, et al. IL-1 beta production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease[J]. PLoS Pathog, 2013, 9(4): e1003330
[63]Ni YH, Fen ZG, Nagashimada M, et al. Novel action of carotenoids on non-alcoholic fatty liver disease: Macrophage polarization and liver homeostasis[J]. Nutrients, 2016, 8(7): 391.
[64]谢晓, 陆伦根. 非酒精性脂肪性肝病的潜在新疗法[J]. 临床肝胆病杂志, 2017, 33(12): 2439-2443.
[65]Farooque A, Afrin F, Adhikari JS, et al. Polarization of macrophages towards M1 phenotype by a combination of 2-deoxy-d-glucose and radiation: Implications for tumor therapy[J]. Immunobiology, 2015, 221(2): 269-281.
[66]Livingstone C. Successful Chinese German vollaborations in historical dresden[J]. Eur J Immunol, 2017, 47(3): 428-431.
[67]Rmh R, Coffelt SB, Neale TA, et al. PyMT-Maclow: A novel, inducible, murine model for determining the role of CD68 positive cells in breast tumor development[J]. PLoS One, 2017, 12(12): e0188591.
[68]Nguyen AL, Cao H, Thinn MM. Metastatic hepatocellular carcinoma treated with zoledronic acid[J]. J Oncol Pract, 2017, JOP.2017.023770. |