[1]Lin EH, Chang HY, Yeh SD, et al. Polyethyleneimine and DNA nanoparticles-based gene therapy for acute lung injury[J]. Nanomedicine, 2013, 9(8): 1293-1303.
[2]Vadasz I, Sznajder JI. Gas exchange disturbances regulate alveolar fluid clearance during acute lung injury[J]. Front Immunol, 2017, 8: 757.
[3]Huppert LA, Matthay MA. Alveolar fluid clearance in pathologically relevant conditions: in vitro and in vivo models of acute respiratory distress syndrome[J]. Front Immunol, 2017, 8: 371.
[4]Althaus M, Pichl A, Clauss WG, et al. Nitric oxide inhibits highly selective sodium channels and the Na+/K+-ATPase in H441 cells[J]. Am J Respir Cell Mol Biol, 2011, 44(1): 53-65.
[5]Lingrel JB. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase[J]. Annu Rev Physiol, 2010, 72: 395-412.
[6]Cicko S, Kohler TC, Ayata CK, et al. Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI)[J]. Oncotarget, 2018, 9(55): 30635-30648.
[7]Leligdowicz A, Chun LF, Jauregui A, et al. Human pulmonary endothelial cell permeability after exposure to LPS-stimulated leukocyte supernatants derived from patients with early sepsis[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(5): L638-L644.
[8]Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis[J]. N Engl J Med, 2008, 358(2): 125-139.
[9]Shyamsundar M, Mcauley DF, Ingram RJ, et al. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury[J]. Am J Respir Crit Care Med, 2014, 189(12): 1520-1529.
[10]Deng W, Li CY, Tong J, et al. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury[J]. Respir Res, 2012, 13: 29.
[11]Wagener BM, Roux J, Carles M, et al. Synergistic inhibition of beta2-adrenergic receptor-mediated alveolar epithelial fluid transport by interleukin-8 and transforming growth factor-beta[J]. Anesthesiology, 2015, 122(5): 1084-1092.
[12]Downs CA, Johnson NM, Coca C, et al. Angiotensin II regulates delta-ENaC in human umbilical vein endothelial cells[J]. Microvasc Res, 2018, 116: 26-33.
[13]Qi D, He J, Wang D, et al. 17beta-estradiol suppresses lipopolysaccharide-induced acute lung injury through PI3K/Akt/SGK1 mediated up-regulation of epithelial sodium channel (ENaC) in vivo and in vitro[J]. Respir Res, 2014, 15: 159.
[14]Chen HI, Yeh DY, Liou HL, et al. Insulin attenuates endotoxin-induced acute lung injury in conscious rats[J]. Crit Care Med, 2006, 34(3): 758-764.
[15]He J, Qi D, Wang DX, et al. Insulin upregulates the expression of epithelial sodium channel in vitro and in a mouse model of acute lung injury: role of mTORC2/SGK1 pathway[J]. Exp Cell Res, 2015, 331(1): 164-175.
[16]Zhang W, Wang DX. Study of regulatory effect of insulin on expression of epithelial sodium channel alpha subunit in A549 cells[J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2010, 22(7): 385-388.
[17]Qi W, Li H, Cai XH, et al. Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury[J]. Lab Invest, 2015, 95(11): 1258-1268.
[18]Mattes C, Laube M, Thome UH. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells[J]. Physiol Rep, 2014, 2(3): e00269.
[19]Wu K, Tian R, Huang J, et al. Metformin alleviated endotoxemia-induced acute lung injury via restoring AMPK-dependent suppression of mTOR[J]. Chem Biol Interact, 2018, 291: 1-6.
[20]Gille T, Randrianarison-Pellan N, Goolaerts A, et al. Hypoxia-induced inhibition of epithelial Na(+) channels in the lung. Role of Nedd4-2 and the ubiquitin-proteasome pathway[J]. Am J Respir Cell Mol Biol, 2014, 50(3): 526-537. |