[1]Trierweiler H,Kisielewicz G,Hoffmann Jonasson T,et al.Sarcopenia:a chronic complication of type 2 diabetes mellitus[J].Diabetol Metab Syndr,2018,10:25.
[2]Fung FY,Koh YLE,Malhotra R,et al.Prevalence of and factors associated with sarcopenia among multi-ethnic ambulatory older Asians with type 2 diabetes mellitus in a primary care setting[J].BMC Geriatr,2019,19(1):122.
[3]Park SW,Goodpaster BH,Strotmeyer ES,et al.Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes:the health,aging,and body composition study[J].Diabetes Care,2007,30(6):1507-1512.
[4]Koo BK,Roh E,Yang YS,et al.Difference between old and young adults in contribution of β-cell function and sarcopenia in developing diabetes mellitus[J].J Diabetes Investig,2016, 7(2):233-240.
[5]Reddy SS,Shruthi K,Prabhakar YK,et al.Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats[J].Arch Biochem Biophys,2018,639:16-25.
[6]王慧,罗勇.Atrogin-1和MuRF-1在肌肉萎缩中的作用机制及影响因素[J].实用医学杂志,2012,28(11):1921-1922.
[7]Gomes MD,Lecker SH,Jagoe RT,et al.Atrogin-1,a muscle-specifific F-box protein highly expressed during muscle atrophy[J].Proc Natl Acad Sci USA,2001,98(25):14440-14445.
[8]Clarke BA,Drujan D,Willis MS,et al.The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasonetreated skeletal muscle[J].Cell Metab,2007,6(5):376-385.
[9]Chen GQ,Mou CY,Yang YQ,et al.Exercise training has beneficial anti-atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes[J].Life Sci,2011,89(1/2):44-49.
[10]Hirata Y,Nomura K,Senga Y,et al.Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis[J].JCI Insight,2019,4(4):e124952.
[11]Conte M,Armani A,Conte G, et al.Muscle-specific Perilipin2 down-regulation affects lipid metabolism and induces myofiber hypertrophy[J].J Cachexia Sarcopenia Muscle,2019,10(1):95-110.
[12]Meex RCR,Blaak EE,van Loon LJC.Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes[J].Obes Rev,20(9):1205-1217.
[13]Oost LJ,Kustermann M,Armani A,et al.Fibroblast growth factor 21 controls mitophagy and muscle mass[J].J Cachexia Sarcopenia Muscle,2019,10(3):630-642.
[14]Yamamoto Y,Sawa R,Wake I,et al.Glucose-mediated inactivation of AMP-activated protein kinase reduces the levels of L-type amino acid transporter 1 mRNA in C2C12 cells[J].Nutr Res,2017,47:13-20.
[15]Gan Z,Fu T,Kelly DP,et al.Skeletal muscle mitochondrial remodeling in exercise and diseases[J].Cell Res,2018,28(10): 969-980.
[16]Lokireddy S,Wijesoma IW,Teng S,et al.The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli[J].Cell Metab,2012,16(5):613-624.
[17]Chung E,Campise SN,Joiner HE,et al.Effect of annatto-extracted tocotrienols and green tea polyphenols on glucose homeostasis and skeletal muscle metabolism in obese male mice[J].J Nutr Biochem,2019,67:36-43.
[18]Wang D,Sun H,Song G,et al.Resveratrol improves muscle atrophy by modulating mitochondrial quality control in stz-induced diabetic mice[J].Mol Nutr Food Res,2018,62(9):e1700941.
[19]Bitar MS,Al-Mulla F.A defect in Nrf2 signaling constitutes a mechanism for cellular stress hypersensitivity in a genetic rat model of type 2 diabetes[J].Am J Physiol Endocrinol Metab,2011,301(6):E1119-1129.
[20]Bitar MS,Al-Mulla F.ROS constitute a convergence nexus in the development of IGF1 resistance and impaired wound healing in a rat model of type 2 diabetes[J].Dis Model Mech,2012,5(3):375-388.
[21]Sriram S,Subramanian S,Juvvuna PK,et al.Myostatin induces DNA damage in skeletal muscle of streptozotocin-induced type 1 diabetic mice[J].J Biol Chem,2014,289(9):5784-5798.
[22]Hur J,Kim M,Choi SY,et al.Isobavachalcone attenuates myotube atrophy induced by TNF-α through muscle atrophy F-box signaling and the nuclear factor erythroid 2-related factor 2 cascade[J].Phytother Res,2019,33(2):403-411.
[23]Jiménez-Osorio AS,Monroy A,Alavez S.Curcumin and insulin resistance molecular targets and clinical evidences[J].Biofactors,2016,42(6):561.
[24]Adachi N,Kanazawa I,Tanaka KI,et al.Insulin-like growth factor-i protects against the detrimental effects of advanced glycation end products and high glucose in myoblastic c2c12 cells[J].Calcif Tissue Int,2019,105(1):89-96.
[25]O'Neill BT,Bhardwaj G,Penniman CM,et al.Foxo transcription factors are critical regulators of diabetes-related muscle atrophy[J]. Diabetes,2019,8(3):556-570.
[26]Zhang L,Du J,Hu Z,et al.IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting[J].J Am Soc Nephrol,2009,20(3):604-612.
[27]Leite APO,Arago DS,Nogueira MD,et al.Modulation of renin angiotensin system components by high glucose levels in the culture of collecting duct cells[J].J Cell Physiol,2019,234(12):22809-22818.
[28]Takao T,Horino T,Kagawa T,et al.Possible involvement of intracellular angiotensin II receptor in high-glucose-induced damage in renal proximal tubular cells[J].J Nephrol,2011,24(2):218-224.
[29]Hamrick MW.Role of the cytokine-like hormone leptin in muscle-bone crosstalk with aging[J].J Bone Metab,2017,24(1):1-8.
[30]Lee D,Goldberg AL.SIRT1 protein,by blocking the activities of transcription factors FoxO1 and FoxO3,inhibits muscle atrophy and promotes muscle growth[J].J Biol Chem,2013,288(42):30515-30526.
[31]Lin L,Chen K,Abdel Khalek W,et al.Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3[J].PLoS One,2014,9(1):e85636.
[32]Chiu HC,Chiu CY,Yang RS,et al.Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin-3 down-regulation[J].J Cachexia Sarcopenia Muscle,2018,9(3):585-602.
[33]Wimmer RJ,Russell SJ,Schneider MF.Green tea component EGCG,insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers[J].J Nutr Biochem,2015,26(12):1559-1567.
[34]Kang SH,Lee HA,Kim M,et al.Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing's syndrome[J].Am J Physiol Endocrinol Metab,2017,312(6): E495-E507.
[35]Bodine SC,Stitt TN,Gonzalez M,et al.Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo[J].Nat Cell Biol,2001,3(11):1014-1019.
[36]Matsui T,Nagoshi T,Hong EG,et al.Effects of chronic Akt activation on glucose uptake in the heart[J].Am J Physiol Endocrinol Metab,2006,290(5):E789-797.
[37]Sawitzky M,Zeissler A,Langhammer M,et al.Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice[J].PLoS One,2012,7(6):e39711.
[38]Bentzinger CF,Romanino K,Cloetta D,et al.Skeletal muscle-specific ablation of raptor,but not of rictor,causes metabolic changes and results in muscle dystrophy[J].Cell Metab,2008,8(5):411-424.
[39]Betz C,Stracka D,Prescianotto-Baschong C,et al.Feature Article:mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology[J].Proc Natl Acad Sci USA,2013,110(31):12526-12534.
[40]Schieke SM,Phillips D,JP MC Jr,et al.The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity[J].J Biol Chem,2006,281(37):27643-27652.
[41]Zheng X,Boyer L,Jin M,et al.Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration[J].Elife,2016,5:e13378.
[42]Bitar MS,Nader J,Al-Ali W,et al.Hydrogen sulfide donor NaHS improves metabolism and reduces muscle atrophy in Type 2 Diabetes:implication for understanding sarcopenic pathophysiology[J].Oxid Med Cell Longev,2018,6825452.
[43]Matsuyama R,Tomi M,Akanuma S,et al.Up-regulation of L-type amino acid transporter 1(LAT1) in cultured rat retinal capillary endothelial cells in response to glucose deprivation[J].Drug Metab Pharmacokinet,2012,27(3):317-324.
[44]Diah SK,Padbury JF,Campbell WA,et al.Molecular cloning of the rat TA1/LAT-1/CD98 light chain gene promoter[J].Biochim Biophys Acta,2001,1518(3):267-270.
[45]Kawaguchi T,Osatomi K,Yamashita H,et al.Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase[J].J Biol Chem,2002,277(6):3829-3835.
[46]Wang H,Wollheim CB.ChREBP rather than USF2 regulates glucose stimulation of endogenous L-pyruvate kinase expression in insulin-secreting cells[J].J Biol Chem,2002,277(36):32746-32752.
[47]Bijland S,Mancini SJ,Salti P.Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation[J].Clin Sci,2013,124(8):491-507.
[48]Amin SN,Hussein UK,Yassa HD,et al.Synergistic actions of vitamin D and metformin on skeletal muscles and insulin resistance of type 2 diabetic rats[J].J Cell Physiol,2018,233(8):5768-5779.
[49]Suter M,Riek U,Tuerk R, et al.Dissecting the role of 5′-AMP for allosteric stimulation, activation,and deactivation of amp-activated protein kinase[J].J Biol Chem,2006,281(43):32207-32216.
[50]朱海波.调血脂创新药物IMM-H007临床前开发研究.天津:中国药学会中药与天然药物专业委员会,2015.
[51]Gledhill JR,Montgomery MG,Leslie AGW,et al.Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols[J].Proc Natl Acad Sci USA,2007,104(34):13632-13637.
[52]Zheng J,Ramirez VD.Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phenolic phytochemicals[J].Br J Pharmacol,2000,130(5):1115-1123.
[53]Mori H,Kuroda A,Ishizu M,et al.Association of accumulated advanced glycation end-products with a high prevalence of sarcopenia and dynapenia in patients with type 2 diabetes[J].J Diabetes Investig,2019,10(5):1332-1340.
[54]游嘉,张文健,娄晋宁.糖基化终末产物对胰岛β细胞的损伤及作用机制研究进展[J].医学研究杂志,2015,44(7):174-176,179.
[55]Chiu CY,Yang RS,Sheu ML,et al.Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated,AMPK-down-regulated,Akt pathway[J].J Pathol,2016,238(3):470-482. |