[1]Hendrix Sl, Clark A, Nygaard I, et al. Pelvic organ prolapse in the Women's Health Initiative: gravity and gravidity [J]. Am J Obstet Gynecol, 2002, 186(6): 1160-1166. [2]Weber Am, Abrams P, Brubaker L, et al. The standardization of terminology for researchers in female pelvic floor disorders [J]. Int Urogynecol J, 2001, 12(3): 178-186. [3]Bradley Cs, Zimmerman Mb, Qi Y, et al. Natural history of pelvic organ prolapse in postmenopausal women [J]. Obstet Gynecol, 2007, 109(4): 848-854. [4]Islam RM, Oldroyd J, Rana J, et al. Prevalence of symptomatic pelvic floor disorders in community-dwelling women in low and middle-income countries: a systematic review and meta-analysis [J]. Int Urogynecol J, 2019. 10.1007/s00192-019-03992. [5]李志毅. 中国城市地区女性盆腔器官脱垂临床流行病学调查 [J]. 中华医学杂志, 2019, 99(11): 857-861. [6]丁峰. 厦门社区女性盆底功能障碍性疾病流行病学研究 [D]. 福建医科大学, 2011. [7]陈聪. 温州女性盆底功能障碍性疾病流行病学研究 [J]. 温州医科大学学报, 2016, 46(3): 194-198. [8]刘苗. 太原市女性盆腔器官脱垂流行病学调查及中医体质类型分析 [D]. 山西中医药大学, 2017. [9]Kinman Cl, Lemieux CA, Agrawal A, et al. The relationship between age and pelvic organ prolapse bother [J]. Int Urogynecol J, 2017, 28(5): 751-755. [10]Allen-Brady K, Norton Pa, Jolyn Hill A, et al. Risk of pelvic organ prolapse treatment based on extended family history [J]. Am J Obstet Gynecol, 2020. https://doi.org/10.1016/j.ajog.2019.12.271. [11]Shah SM, Sultan Ah, Thakar R. The history and evolution of pessaries for pelvic organ prolapse [J]. Int Urogynecol J Pelvic Floor Dysfunct, 2006, 17(2): 170-175. [12]Rantell A. Vaginal pessaries for pelvic organ prolapse and their impact on sexual function [J]. Sex Med Rev, 2019, 7(4): 597-603. [13]Lone F, Thakar R, Sultan AH, et al. A 5-year prospective study of vaginal pessary use for pelvic organ prolapse [J]. Int J Gynaecol Obstet, 2011, 114(1): 56-59. [14]Wu YM, Mcinnes N, Leong Y. Pelvic floor muscle training versus watchful waiting and pelvic floor disorders in postpartum women: A systematic review and meta-analysis [J]. Female Pelvic Med Reconstr Surg, 2018, 24(2): 142-149. [15]Ahadi T, Taghvadoost N, Aminimoghaddam S, et al. Efficacy of biofeedback on quality of life in stages I and II pelvic organ prolapse: A Pilot study [J]. Eur J Obstet Gynecol Reprod Biol, 2017, 215: 241-246. [16]Maher C, Feiner B, Baessler K, et al. Surgical management of pelvic organ prolapse in women [J]. Cochrane Database Syst Rev, 2013, 30(4): CD004014. [17]Altman D, Väyrynen T, Engh ME, et al. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse [J]. N Engl J Med, 2011, 364(19): 1826-1836. [18]Heneghan CJ, Goldacre B, Onakpoya I, et al. Trials of transvaginal mesh devices for pelvic organ prolapse: a systematic database review of the US FDA approval process [J]. BMJ Open, 2017, 7(12): e017125. [19]Wein AJ. Re: Implications of the FDA statement on transvaginal placement of mesh: the aftermath [J]. J Urol, 2015, 193(2): 606-607. [20]Veit-Rubin N, Cartwright R, Singh Au, et al. Association between joint hypermobility and pelvic organ prolapse in women: a systematic review and meta-analysis [J]. Int Urogynecol J, 2016, 27(10): 1469-1478. [21]Freitas-Rodríguez S, Folgueras Ar, Lòpez-Otín C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond [J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864: 2015-2025. [22]Dökmeci F, Teksen F, Cetinkayase, et al. Expressions of homeobox, collagen and estrogen genes in women with uterine prolapse [J]. Eur J Obstet Gynecol Reprod Biol, 2019, 233: 26-29. [23]Esra NT, Nadiye K, Gonca YY, et al. The role of ADAMTS-2, collagen type-1, TIMP-3 and papilin levels of uterosacral and cardinal ligaments in the etiopathogenesis of pelvic organ prolapse among women without stress urinary incontinence [J]. Eur J Obstet Gynecol Reprod Biol, 2018, 231: 158-163. [24]Salman Mc, Ozyuncu O, Sargon Mf, et al. Light and electron microscopic evaluation of cardinal ligaments in women with or without uterine prolapse [J]. Int Urogynecol J, 2010, 21(2): 235-239. [25]Antonella V, Simona P, Anna G, et al. Immunolocalization of advanced glycation end products, mitogen activated protein kinases, and transforming growth factor-β/Smads in pelvic organ prolapse [J]. J Histochem Cytochem, 2018, 22155418772798. [26]Han L, Wang L, Wang Q, et al. Association between pelvic organ prolapse and stress urinary incontinence with collagen [J]. Exp Ther Med, 2014, 7(5): 1337-1341. [27]Zeng C, Liu J, Wang H, et al. Correlation between autophagy and collagen deposition in patients with pelvic organ prolapse [J]. Female Pelvic Med Reconstr Surg, 2017, 24(3): 213-221. [28]Clark DA, Coker R. Transforming growth factor-beta (TGF-beta) [J]. Int J Biochem Cell Biol, 1998, 30(3): 293-298. [29]Liu C, Wang Y, Li Bs, et al. Role of transforming growth factor β-1 in the pathogenesis of pelvic organ prolapse: A potential therapeutic target [J]. Int J Mol Med, 2017, 40(2): 347-356. [30]Itoh N, Ornitz Dm. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease [J]. J Biochem 2011, 149(2): 121-130. [31]Koo Hy, El-Baz Lm, House S, et al. Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation [J]. J Pathol, 2018, 246(1): 54-66. [32]韩晓瑾. 人子宫内膜间充质干细胞的分离、鉴定及生长因子对其向韧带成纤维细胞分化作用研究 [D]. 山西医科大学, 2019. [33]Caplan AI. Mesenchymal stem cells [J]. J Orthop Res, 1991, 9(5): 641-650. [34]Zhao B, Liang LL, Yan JG, et al. Effect of mechanical stretch on the expressions of elastin, LOX and Fibulin-5 in rat BMSCs with ligament fibroblasts co-culture [J]. Mol Biol Rep, 2012, 39(5): 6077-6085. [35]贾双双, 李伟阳, 刘欣, 等. 转化生长因子- β1 通过产生活性氧诱导骨髓间充质干细胞分化为肌成纤维细胞 [J]. 北京大学学报(医学版), 2015, 5: 41. [36]Ofra Ben Menachem-Zidon, Michal Gropp, Etti Ben Shushan, et al. Systemically transplanted mesenchymal stem cells induce vascular-like structure formation in a rat model of vaginal injury [J]. PLoS One, 2019, 14(6): e0218081. [37]Arsalan S, Audrey C, Luis RM, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro [J]. Stem Cells Dev, 2015, 24(14): 1635-1647. [38]Tao C, Gao SY, Yi H, et al. Experimental study of human amniotic mesenchymal stem cell exosome promoting fibroblasts migration through microRNA-135a [J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2020, 34(2): 234-239. [39]Enea D, Cecconi S, Calcagno S, et al. Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate [J]. The Knee, 2013, 20(6): 562-569. [40]魏兆明, 江文胜, 高艺, 等. 脂肪间充质干细胞的生物学特性及潜在临床应用 [J]. 中国临床药理学与治疗学, 2019, 24(1): 116-120. [41]Liu X, Wang S, Wu S, et al. Exosomes secreted by adipose-derived mesenchymal stem cells regulate type I collagen metabolism in fibroblasts from women with stress urinary incontinence [J]. Stem Cell Res Ther, 2018, 9(1): 159. [42]Naside M, Christopher JH, Christopher RC, et al. Oestradiol-releasing biodegradable mesh stimulates collagen production and angiogenesis: An approach to improving biomaterial integration in pelvic floor repair [J]. Eur Urol Focus, 2019, 5(2): 280-289. [43]Man-Jung H, Mei-Chin W, Ying-Ting H, et al. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction [J]. J Formos Med Assoc, 2014, 113(10): 704-715. [44]Ulrich D, Edwards Sl, Su K, et al. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair [J]. Tissue Eng Part A, 2014, 20: 785-798. [45]Emmerson S, Mukherjee S, Melendez-Munoz J, et al. Composite mesh design for delivery of autologous mesenchymal stem cells influences mesh integration, exposure and biocompatibility in an ovine model of pelvic organ prolapse [J]. Biomaterials, 2019, 225: 119495. |