中国临床药理学与治疗学 ›› 2021, Vol. 26 ›› Issue (9): 1065-1072.doi: 10.12092/j.issn.1009-2501.2021.09.013
樊文香1,张锦璐3,徐驰2
收稿日期:
2021-04-12
修回日期:
2021-06-28
出版日期:
2021-09-26
发布日期:
2021-09-30
通讯作者:
徐驰,男,博士,副研究员,硕士生导师,研究方向:神经药理学。
Tel: 025-83262638 E-mail: xu.ch@outlook.com
作者简介:
樊文香,女,博士,主管药师,研究方向:心脑血管药理和神经药理学。
E-mail: wenxiangfancpu@163.com
基金资助:
FAN Wenxiang 1, ZHANG JinLu 3, XU Chi 2
Received:
2021-04-12
Revised:
2021-06-28
Online:
2021-09-26
Published:
2021-09-30
摘要: α7烟碱型乙酰胆碱受体(α7 nAChRs)在中枢神经系统(central nervous system, CNS)表达,并在各种神经精神疾病中扮演重要作用。激活α7 nAChR可以抑制炎症反应,在中枢神经系统疾病中起到有益作用。本文总结了关于α7 nAChR受体分布、表达等信息,并进一步对α7 nAChR在中枢神经系统疾病(如阿尔兹海默病、帕金森病、脑卒中等)中的作用进行了综述,为开发治疗中枢神经系统疾病提供新思路。
中图分类号:
樊文香, 张锦璐, 徐驰. α7烟碱型乙酰胆碱受体在中枢神经系统性疾病中作用的研究进展[J]. 中国临床药理学与治疗学, 2021, 26(9): 1065-1072.
FAN Wenxiang, ZHANG JinLu, XU Chi. Research progress of α7 nicotinic acetylcholine receptors in central nervous system diseases[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(9): 1065-1072.
[1] | Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's disease[J]. Neuropeptides, 2019, 73:96-106. |
[2] | Kalkman, H O, Feuerbach D. Modulatory effects of a7 nAChRs on the immune system and its relevance for CNS disorders[J]. Cell Mol Life Sci, 2016, 73(13): 2511-2530. |
[3] | Lasala M,Corradi J,Bruzzone A, et al. A human?spe?cific, truncated α7 nicotinic receptor subunit assembles with full?length α7 and forms functional receptors with different stoichi?ometries[J]. J Biol Chem, 2018, 293(27):10707-10717. |
[4] | Fan WX, Li X, Huang LL, et al. S-oxiracetam ameliorates ischemic stroke induced neuronal apoptosis through up-regulating α7 nAChR and PI3K/Akt/GSK3β signal pathway in rats[J]. Neurochem Int, 2018, 115: 50-60. |
[5] | Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors[J]. Br J Pharmacol, 2018,175 (11): 1805-1821. |
[6] | Yang TY, Xiao T, Sun Q, et al. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials[J]. Acta Pharmaceutica Sinica B, 2017, 6: 9-20. |
[7] | Baranowska U, Wisniewska RJ. The α7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system[J]. Postepy Hig Med Dosw (Online), 2017, 71:633-648. |
[8] | Yakel J L . Nicotinic ACh Receptors in the Hippocampus: Role in Excitability and Plasticity[J]. Nicotine Tob Res, 2012, 14:1249–1257. |
[9] | Clarke PB. The fall and rise of neuronal alpha-bungarotoxin binding proteins[J].Trends Pharmacol Sci, 1992, 13(11):407-413. |
[10] | Hone AJ, Mcintosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain[J]. FEBS Lett, 2018, 592(7):1045-1062. |
[11] | Yoshikawa H. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-κB phosphorylation and nuclear factor-κB transcriptional activity through nicotinic acetylcholine receptor α7[J]. 2010, 146(1):116-123. |
[12] | Lykhmus O, Gergalova G, Koval L, et al. Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction[J]. Int J Biochem Cell B, 2014, 53:246-252. |
[13] | Hu MH, Li YQ, Zhang H, et al. Research advances in inflammatory mechanisms based on animal models of depression[J]. Med Recapitulate(医学综述), 2019, 25(12): 2294-2298. |
[14] | Copeland WE, Wolke D, Lereya ST, et al. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood[J]. P Natl Acad Sci, USA, 2014, 111(21):7570-7575. |
[15] | Trottier-Duclos F, Desbeaumes Jodoin V, Fournier-Gosselin MP, et al. A 6-Year Follow-up Study of Vagus Nerve Stimulation Effect on Quality of Life in Treatment-Resistant Depression: A Pilot Study[J]. J ECT, 2018, 34(4): e58-60. |
[16] | Weinstein AA, Deuster PA, Francis JL, et al. Neurohormonal and inflammatory hyper-responsiveness to acute mental stress in depression[J]. Biol Psychol, 2010, 84(2):0-234. |
[17] | Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway[J]. Life Sci, 2007, 80:2325–2329. |
[18] | Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines[J]. Nat Rev Neurosci, 2006, 7:137-151. |
[19] | Philip NS, Carpenter LL, Tyrka AR, et al. Nicotinic acetylcho‐line receptors and depression: a review of the preclinical and clinical literature[J]. Psychopharmacology, 2010, 212: 1-12. |
[20] | Zhao J, Liu X, Chang D, et al. Low-dose ketamine improves LPS-induced depression-like behavior in rats by activating cholinergic anti-inflammatory pathways[J]. ACS Chem Neurosci, 2020, 11(5):752-762. |
[21] | Moriguchi S, Inagaki R, Yi L, et al. Nicotine rescues depressive-like behaviors via alpha7-type nicotinic acetylcholine receptor activation in CaMKIV Null mice[J]. Mol Neurobiol, 2020, 57(12):4929-4940. |
[22] | Higa KK, Grim A, Kamenski M E, et al. Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice[J]. Psychopharmacology, 2017, 234(9-10): 1573-1586. |
[23] | Doguc DK, Delibas N, Vural H, et al. Effects of chronic scopolamine administration on spatial working memory and hippocampal receptors related to learning[J]. Behav Pharmacol, 2012, 23(8): 762-770. |
[24] | Freedman R, Hall M, Adler LE, et al. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia[J]. Biol Psychiatry, 1995, 38(1): 22-33. |
[25] | Leonard S, Mexal S, Freedman R. Smoking, genetics and schizophrenia: evidence for self medication[J]. J Dual Diagn, 2007, 3(3-4):43-59. |
[26] | Zhang P, Dai WJ, Wang ZR, et al. A review of α7 nicotinic acetylcholine receptor and schizophrenia cognition[J]. Chin M ent Health J(临床精神病学), 2018, 32(4): 324-328. |
[27] | Araud T, Graw S, Berger R, et al. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of alpha7 * nAChR function[J]. Biochem Pharmacol, 2011, 82(8): 904-914. |
[28] | Sinkus ML, Lee MJ, Gault J, et al. A 2-base pair deletion polymorphism in the partial duplication of the α7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia[J]. Brain Resh, 2009, 1291:1-11. |
[29] | Giannakopoulos P, Hof PR, K?vari E, et al. Distinct patterns of neuronal loss and Alzheimer’s disease lesion distribution in elderly individuals older than 90 years[J]. J Neuropathol Exp Neurol, 1996, 55:1210–1220. |
[30] | Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer's disease[J]. Lancet, 1976, 308: 1403. |
[31] | Hoskin JL, Al-Hasan Y, Sabbagh MN. Nicotinic Acetylcholine Receptor Agonists for the Treatment of Alzheimer's Dementia: An Update[J]. Nicotine Tob Res, 2019, 21(3):370-376. |
[32] | Arias E, Alés E, Gabilan NH, et al. Galantamine prevents apoptosis induced by beta-amyloid and thapsigargin: involvement of nicotinic acetylcholine receptors[J]. Neuropharmacology, 2004, 46(1):103–114. |
[33] | Arias E, Gallego-Sandín S, Villarroya M, et al. Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors[J]. J Pharmacol Exp Ther, 2005, 315(3):1346–1353. |
[34] | Carson R, Craig D, McGuinness B, et al. α7 nicotinic acetylcholine receptor gene and reduced risk of Alzheimer’s disease[J]. J Med Genet, 2008, 45(4):244-248. |
[35] | Maragakis NJ, Rothstein JD. Mechanisms of disease: astrocytes in neurodegenerative disease[J]. Nat Clin Pract Neurol, 2006, 2(12):679–689. |
[36] | Wyss-Coray T. In?ammation in Alzheimer disease: driving force, bystander |
or benefcial response?[J]. Nat Med, 2006,12(9):1005–1015. | |
[37] | Kazuyuki T, Yoshihisa K, Mana S, et al. Galantamine-induced amyloid-{beta clearance mediated via stimulation of microglial nicotinic acetylcholine receptors[J]. J Biol Chem, 2011, 285(51):40180-40191. |
[38] | Campbell IL. Cytokine-mediated in?ammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS[J]. Brain Res Rev, 2005, 48(2):166–177. |
[39] | Egea J, Buendia I, Parada E, et al. Antiin?ammatory role of microglial alpha7 nAChRs and its role in neuroprotection[J]. Biochem Pharmacol, 2015, 97(4):463–472. |
[40] | Godyn, J, Jonczyk, J, Panek, D, et al. Therapeutic strategies for Alzheimer's disease in clinical trials[J]. Pharmacol Rep, 2016, 68:127–138. |
[41] | Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's diseases[J]. Neuropeptides, 2019, 73:96-106. |
[42] | Shimada H, Hirano S, Shinotoh H, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET[J]. Neurology, 2009, 73(4):273-278. |
[43] | Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study[J]. Arch Neurol, 2003, 60(12):1745-1748. |
[44] | Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease[J]. N Engl J Med, 2004, 351(24):2509-2518. |
[45] | Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: Risk factors and prevention[J]. Lancet Neurol, 2016, 15(12):1257–1272. |
[46] | Gallo V, Vineis P, Cancellieri M, et al. Exploring causality of the association between smoking and Parkinson’s disease[J]. Int J Epidemiol, 2018, 48(3):912-925. |
[47] | Ma C, Liu Y, Neumann S, et al. Nicotine from cigarette smoking and diet and Parkinson disease: A review[J]. Transl Neurodegener,2017, 6:18. |
[48] | Stuckenholz V, Bacher M, Balzer-Geldsetzer M, et al. The alpha 7 nAChR Agonist PNU-282987 Reduces Inflammation and MPTP-Induced Nigral Dopaminergic Cell Loss in Mice[J]. J Parkinsons Dis, 2013, 3(2):161-172. |
[49] | Suzuki S, Kawamata J, Matsushita T, et al. 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride protects against 6-hydroxydopamine-induced parkinsonian neurodegeneration through α7 nicotinic acetylcholine receptor stimulation in rats[J]. J Neurosci Res, 2013, 91(3):462-471. |
[50] | Steven V, Laura FF, Claire T, et al. Neuroprotective and anti-inflammatory effects of a therapy combining agonists of nicotinic α7 and σ1 receptors in a rat model of Parkinson's disease[J]. Neural Regen Res, 2021, 16(6):1099-1104. |
[51] | Liu Y, Zeng X, Hui Y, et al. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: Implications for Parkinson’s disease[J]. Neuropharmacology, 2015, 91:87-96. |
[52] | Fan WX. Research progress on the mechanism of ischemic stroke[J]. J China Pharm Univ(中国药科大学学报), 2018, 49(6): 751-759. |
[53] | Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of t regulatory cells[J]. Immunology, 2006, 117, 433-442. |
[54] | Paul RK, Devin MB, William BR, et al. α7 nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2-STAT3 activation in murine models of intracerebral hemorrhage[J]. Biomed Res Int, 2017, 1-14 |
[55] | Han ZY, Shen FX, He Y, et al. Correction: Activation of α-7 Nicotinic Acetylcholine Receptor Reduces Ischemic Stroke Injury Through Reduction of Pro-Inflammatory Macrophages and Oxidative Stress[J]. PLoS One, 2016, 11(3):e0152218. |
[56] | Ikuya K, Shinya D, Fuyuko T, et al. Activation of the α7 Nicotinic Acetylcholine Receptor Upregulates Blood-Brain Barrier Function Through Increased claudin-5 and Occludin Expression in Rat Brain Endothelial Cells[J]. Neurosci Lett, 2019, 694:9-13. |
[57] | Zou DQ, Luo M, Han ZY, et al. Activation of Alpha-7 Nicotinic Acetylcholine Receptor Reduces Brain Edema in Mice With Ischemic Stroke and Bone Fracture[J]. Mol Neurobiol, 2017, 54(10):8278-8286. |
[58] | Li ZR, Shen L. Research progress in function of α7 nicotinic acetylcholine receptor on microglia andits related diseases[J]. Med Recapitulate(医学综述), 2019, 25(22): 4374-4378. |
[59] | Parada E, Egea J, Buendia I, et al. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme-oxygenase-1 via nuclear factor erythroid-2-related factor 2[J]. Antioxid Redox Signal, 2013, 19 (11): 1135-1148. |
[60] | Li XM, Fan WX. Effects of PNU-282987 on neuronal apoptosis and learning and memory ability after cerebral ischemia-reperfusion in rats[J]. J China Pharm Univ(中国药科大学学报), 2020, 51(2): 193-197. |
[61] | Yuan M, Zhang XX, Fu XC, et al. Enriched environment alleviates post-stroke cognitive impairment through enhancing alpha7-nAChR expression in rats[J]. Arq Neuropsiquiatr, 2020, 78(10):603-610. |
[62] | Neumann S, Shields NJ, Balle T, et al. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective[J]. Int J Mol Sci, 2015, 16(12): 29029-29046. |
[1] | 王金刚, 李 强, 孙会艳, 王洪权. 鼠尾草酸在帕金森病中的神经保护作用机制研究进展[J]. 中国临床药理学与治疗学, 2023, 28(9): 1073-1080. |
[2] | 王 坤, 许佩佩, 周兰兰, 鲁 晟. 人参皂苷Rg1调控Epac1/Rap1信号通路对缺血性脑卒中大鼠神经保护作用机制研究[J]. 中国临床药理学与治疗学, 2023, 28(7): 721-727. |
[3] | 李青华, 赵 艳, 赵海港, 高朋飞, 徐炳欣. ABCB1 G2677T 基因多态性检测在缺血性脑卒中患者应用阿托伐他汀降脂治疗中的价值[J]. 中国临床药理学与治疗学, 2023, 28(6): 633-640. |
[4] | 秦文秀, 许军峰, 杨 婷, 王坪霏. 丹参酮IIA治疗缺血性脑卒中后神经损伤的信号通路研究进展[J]. 中国临床药理学与治疗学, 2023, 28(6): 705-713. |
[5] | 付虹, 田磊. 缺血性脑卒中伴高血压病患者个体化精准治疗的研究[J]. 中国临床药理学与治疗学, 2022, 27(8): 870-876. |
[6] | 梁美芳, 陈庆状, 杨沛群, 王勇. 基于真实世界的阿托伐他汀仿制药和原研药防治缺血性脑卒中/短暂性脑缺血发作的有效性和安全性比较[J]. 中国临床药理学与治疗学, 2022, 27(7): 785-792. |
[7] | 张宁远, 郑锡军, 许羚, 刘红霞, 郑青山. 阿尔兹海默病的疾病进展模型与研究进展[J]. 中国临床药理学与治疗学, 2021, 26(6): 687-694. |
[8] | 夏春勇, 张作文, 贺小艳, 刘洁, 李小亚, 常秋红, 秦丽娟, 曹珍铭, 丁玲. 缺血性脑卒中患者CYP2C19基因多态性与个体化用药的相关性[J]. 中国临床药理学与治疗学, 2021, 26(3): 318-323. |
[9] | 陈作乾, 林国诗, 戴学军, 王梦莹, 陈炳宏, 杨建, 邱永明, 林瑞生. α-酮戊二酸脱氢酶复合物在缺血性脑卒中后的适应性再灌注中的保护作用研究[J]. 中国临床药理学与治疗学, 2020, 25(9): 961-967. |
[10] | 陆宸宇, 杨君, 刘怡希, 郑云. 帕金森氏病关联miRNAs的功能和调控[J]. 中国临床药理学与治疗学, 2020, 25(7): 775-783. |
[11] | 赵海玲, 张浩军, 赵婷婷, 严美花, 董晞, 马亮, 李平. PNPLA2基因多态性与中国汉族2型糖尿病患者缺血性脑卒中的相关性研究[J]. 中国临床药理学与治疗学, 2020, 25(6): 664-669. |
[12] | 袁小龙,孙华,王中方,陈亚娟,周露露,殷勤,许锦英. 皖南地区脑卒中人群MTHFR C677T基因多态性分布研究[J]. 中国临床药理学与治疗学, 2020, 25(3): 312-316. |
[13] | 章水晶, 杜仲燕. 基于网络药理学研究丹参治疗帕金森病的作用机制[J]. 中国临床药理学与治疗学, 2019, 24(6): 601-607. |
[14] | 常永丽,王春雷,原 丽,郭晓姝,韩玲娜. 外侧隔GABAA 受体在帕金森病模型大鼠焦虑样行为中的作用[J]. 中国临床药理学与治疗学, 2018, 23(7): 734-742. |
[15] | 周 荣,李 玮,胡万华. 颐脑解郁方治疗肾虚肝郁型帕金森病抑郁的临床疗效评价及对血清DA、5-HT、NE的影响[J]. 中国临床药理学与治疗学, 2018, 23(4): 434-439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||