欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是

中国临床药理学与治疗学 ›› 2025, Vol. 30 ›› Issue (9): 1182-1192.doi: 10.12092/j.issn.1009-2501.2025.09.004

• 定量药理学 • 上一篇    下一篇

构建和验证乳腺癌患者麻醉苏醒延迟风险的机器学习网络计算器

葛亮1,冷玉芳2,张鹏1,孔令国1,韩旭东1   

  1. 1 甘肃省妇幼保健院(甘肃省中心医院),兰州  735000,甘肃;2 兰州大学第一医院,兰州  730000,甘肃
  • 收稿日期:2024-09-24 修回日期:2024-12-11 出版日期:2025-09-26 发布日期:2025-09-09
  • 通讯作者: 韩旭东,男,硕士,主任医师,主要从事与麻醉方面相关的工作。 E-mail: hxd809904@126.com
  • 作者简介:葛亮,男,硕士,副主任医师,主要从事与麻醉方面相关的工作。 E-mail: ge198308liang@163.com
  • 基金资助:
    甘肃省自然科学基金项目(20JR10RA423);吴阶平医学基金会临床科研专项资助基金(320.6750.2023-18-103);兰州市科技(人才)项目(2020-ZD-1)

Construction and validation of a machine learning network calculator for the risk of delayed awakening from anaesthesia in breast cancer patients

GE Liang1, LENG Yufang2, ZHANG Peng1, KONG Lingguo1, HAN Xudong1   

  1. 1 Gansu Maternal and Child Health Hospital (Gansu Provincial Center Hospital), Lanzhou 735000, Gansu, China; 2 The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
  • Received:2024-09-24 Revised:2024-12-11 Online:2025-09-26 Published:2025-09-09

摘要:

目的:基于机器学习(ML)模型构建网络计算器预测乳腺癌(BC)患者麻醉苏醒延迟风险。方法:选取本院2023年1月至2024年6月手术治疗的435例BC患者。使用Boruta算法筛选麻醉苏醒延迟风险重要特征变量。根据3∶2比例将所有患者随机分配为训练集(n=261)和测试集(n=174)并构建和训练9种ML模型。根据10次随机抽样的受试者工作特征(ROC)曲线评估9种ML模型并使用决策曲线分析评估模型临床实用价值。结合SHapley加法解释(SHAP)条形图、摘要图和力图附加解释和可视化ML模型。使用R包构建预测BC患者麻醉苏醒延迟风险的网络计算器。结果:435例BC患者中,25.1%患者出现麻醉苏醒延迟。Boruta算法筛选出7个特征变量。ROC曲线显示9种ML模型中XGBoost模型的10次随机抽样的曲线下面积(AUC)最高,决策曲线显示XGBoost模型具有显著临床净收益。SHAP条形图显示重要性排序为ASA分级、手术时间、麻醉时间、术中失血量、丙泊酚、术前贫血和术中低体温。SHAP摘要图反映7个重要特征变量的影响范围分布,呈“两端分离”现象。SHAP力图可视化XGBoost模型预测单个患者麻醉苏醒延迟风险,麻醉苏醒延迟患者预测值为0.998,无麻醉苏醒延迟患者预测值为0.008 91。基于可解释XGBoost模型的网络计算器(https://xz-nomogram.shinyapps.io/DE_web/)能有效预测BC患者麻醉苏醒延迟风险。结论:ASA分级、手术时间、丙泊酚、术中失血量、麻醉时间、术前贫血和术中低体温是BC患者麻醉苏醒延迟风险重要特征变量。基于可解释XGBoost模型的网络计算器能准确快捷定量麻醉苏醒延迟风险,有助于临床医生有效调整治疗策略,更好改善患者预后。

关键词: 乳腺癌, 麻醉苏醒延迟, 机器学习, Boruta算法, SHAP, XGBoost模型, 网络计算器

Abstract:

AIM: To construct a network calculator based on machine learning (ML) models to predict the risk of delayed awakening from anaesthesia in breast cancer (BC) patients. METHODS: A total of 435 BC patients surgically treated at our hospital from January 2023 to June 2024 were selected. The Boruta algorithm was used to screen for important characteristic variables for the risk of delayed awakening from anaesthesia.All patients were randomly assigned to a training set (n=261) and a test set (n=174) based on a 3:2 ratio and nine ML models were constructed and trained. Nine ML models were evaluated on the basis of receiver operating characteristic (ROC) curves for a random sample of 10 subjects and the clinical utility of the models was assessed using decision curve analysis.Combined with SHapley Additive exPlanations (SHAP) bar graphs, summary graphs and force diagrams additional interpretation and visualization of the ML model.Construction of a network calculator for predicting the risk of delayed awakening from anesthesia in BC patients using the R package. RESULTS: Of the 435 BC patients, 25.1% experienced delayed awakening from anesthesia.Boruta algorithm screened seven feature variables.The ROC curve shows that the XGBoost model has the highest area under the curve (AUC) for 10 random samples among the 9 ML models, and the decision curve shows that the XGBoost model has a significant clinical net benefit.The SHAP bar graph shows the importance of ASA classification, surgery time, anesthesia time, intraoperative blood loss, propofol, preoperative anemia, and intraoperative hypothermia, and the SHAP summary graph reflects the distribution of the ranges of influence of the seven important characteristic variables, which are "separated at the ends."The SHAP force diagram visualization XGBoost model predicted the risk of delayed awakening from anesthesia for individual patients with a predictive value of 0.998 for patients with delayed awakening from anesthesia and 0.008 91 for patients without delayed awakening from anesthesia.A web-based calculator (https://xz-nomogram.shinyapps.io/DE_web/) based on an interpretable XGBoost model effectively predicts the risk of delayed awakening from anesthesia in BC patients. CONCLUSION: ASA classification, surgery time, propofol, intraoperative blood loss, anaesthesia time, preoperative anaemia and intraoperative hypothermia are important characteristic variables for the risk of delayed awakening from anaesthesia in BC patients. The network calculator based on the interpretable XGBoost model can accurately and quickly quantify the risk of delayed awakening from anaesthesia, which can help clinicians to effectively adjust the treatment strategy and better improve the prognosis of patients.

Key words: breast cancer, delayed awakening from anaesthesia, machine learning, Boruta algorithm, SHAP, XGBoost model, network calculator

中图分类号: