[1] Vinay K, Abul KA, Nelson F, et al. The hematopoietic and lymphoid system[M]//Qihui Zhai. Textbook of pathology. Peking: Peking University Medical Press, 2009:275-299. [2] Keating MJ. Leukemia: A model for drug development[J]. Clin Cancer Res,1997, 3(12 Pt 2): 2598-2604. [3] Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of potential anticancer agents XII on the criteria and kinetics associated with “curability” of experimental leukemia[J]. Cancer Chemother Rep,1964, 35: 1-111. [4] Gilliland DG. Hematologic malignancies[J]. Curr Opin Hematol,2001, 8(4): 189-191. [5] Olivier K, Francoise M. From Mice to Human: The "Two-Hit Model" of Leukemogenesis[J].Cell Cycle,2006, 5(6): 569-570. [6] Moreau-Gachelin F, Tavitian A, Tambourin P, et al. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias[J]. Nature, 1988, 331(6153): 277-280. [7] Klemsz MJ, McKercher SR, Celada A, et al. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene[J]. Cell, 1990, 61(1): 113-124. [8] Kosmider O, Denis N, Lacout C, et al. Kit-activating mutations cooperate with Spi-1/PU.1 overexpression to promote tumorigenic progression during erythroleukemia in mice[J]. Cancer Cell, 2005, 8(6): 467-478. [9] Ruibao R. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model[J]. Oncogene,2002, 21(56): 8629-8642. [10] Ren R. Dissecting the molecular mechanism of chronic myelogenous leukemiausing murine models[J]. Leuk Lymphoma, 2002, 43(8): 1549-1561. [11] Ren R. Modeling the dosage effect of oncogenes in leukemogenesis[J]. Curr Opin Hematol, 2004, 11(1): 25-34. [12] Wong S, Witte ON. Modeling Philadelphia chromosome positive leukemias[J]. Oncogene, 2001, 20(40): 5644-5659. [13] Druker BJ, Sawyers CL, Capdeville R, et al. Chronic myelogenous leukemia[J]. Hematology Am Soc Hematol Educ Program, 2001: 87-112. [14] Goldman JM. Initial treatment for patients with CML[J]. Hematology Am Soc Hematol Educ Program,2009: 453-460. [15] Greaves MF. Differentiation linked leukemogenesis in lymphocytes[J]. Science,1986, 234(4777): 697-704. [16] Champlin R, Gale RP. Acute lymphoblastic leukemia: Recent advances in biology and therapy[J]. Blood,1989, 73(8): 2051-2066. [17] Pui CH. Childhood leukemias[J]. N Engl J Med,1995, 332(24): 1618-1630. [18] Copelan EA, McGuire EA. The biology and treatment of acute lymphoblastic leukemia in adults[J]. Blood, 1995, 85(5): 1151-1168. [19] Hunger, SP, Lu X, Devidas M, et al. Improved Survival for Children and Adolescents With Acute Lymphoblastic Leukemia Between 1990 and 2005: A Report From the Children's Oncology Group[J]. J Clin Oncol, 2012, 30(14): 1663-1669. [20] Kamel-Reid S. Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in SClD mice[J]. Blood, 1991, 78(11): 2973-2981. [21] Skorski T, Nieborowska-Skorska M, Calabretta B. A model of Ph positive chronic myeloid leukemia-blast crisis cell line growth in immunodeficient SCID mice[J]. Folia Histochem Cytobiol, 1992, 30(3): 91-96. [22] Fatih M, Uckun. Severe Combined Immunodeficient Mouse Models of Human Leukemia[J]. Blood,1996, 88(4): 1135-1146. [23] Bhadri. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia[J]. BMC Genomics, 2011, 12: 565-577. [24] Gaynon PS, Carrel AL. Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia[J]. Adv Exp Med Biol, 1999, 457: 593-605. [25] Brian JS. Murine Models of CLL: Role of microRNA-16 in the NZB mouse model[J]. Br J Haematol, 2007, 139(5): 645-657. [26] Hamano Y, Hirose S, Ida A, et al. Susceptibility alleles for aberrant B-1 cell proliferation involved in spontaneously occurring B-cell chronic lymphocytic leukemia in a model of New Zealand white mice[J]. Blood,1998, 92(10): 3772-3779. [27] Phillips JA, Mehta K, Fernandez C, et al. The NZB mouse as a model for chronic lymphocytic leukemia[J]. Cancer Res,1992, 52(2): 437-443. [28] Ramachandra S, Metcalf RA, Fredrickson T, et al. Requirement for increased IL-10 in the development of B-1 lymphoproliferative disease in a murine model of CLL[J]. J Clin Invest,1996, 98(8): 1788-1793. [29] Raveche ES. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice[J]. Blood,2007, 109(12): 5079-5086. [30] Herron LR, Coffman RL, Bond MW, et al. Increased autoantibody production by NZB/NZW B cells in response to IL-5[J]. J Immunol,1988, 141(3): 842-848. [31] Pekarsky Y, Zanesi N, Aqeilan RI, et al. Animal models for chronic lymphocytic leukemia[J]. J Cell Biochem,2007, 100(5): 1109-1118. [32] Herling M, Patel KA, Khalili J, et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state[J]. Leukmia, 2006, 20(2): 280-285. [33] Hoyer KK, French SW, Turner DE, et al. Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma[J]. Proc Natl Acad Sci USA,2002, 99(22): 14392-14397. [34] Hisada M, Biggar RJ, Greene MH, et al. Solid tumors after chronic lymphocytic leukemia[J]. Blood, 2001, 98(6): 1979-1981. [35] Cook GJ, Pardee TS. Animal models of leukemia: any closer to the real thing[J]? Cancer Metastasis Rev, 2013, 32(1/2): 63-76. |