[1]Brown EN, Lydic R, Schiff ND.General anesthesia, sleep, and coma[J]. N Engl J Med, 2010, 363(27): 2638-2650.
[2]Sadhasivam S, Chidambaran V, Zhang X, et al. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics [J]. Pharmacogenomics J, 2015, 15(2): 119-126.
[3]Bastami S, Gupta A, Zackrisson AL, et al. Influence of UGT2B7, OPRM1 and ABCB1 gene polymorphisms on postoperative morphine consumption [J]. Basic Clin Pharmacol Toxicol, 2014, 115(5): 423-431.
[4]Matic M, Simons SH, van Lingen RA, et al. Rescue morphine in mechanically ventilated newborns associated with combined OPRM1 and COMT genotype [J]. Pharmacogenomics, 2014, 15(10): 1287-1295.
[5]Venkatasubramanian R, Fukuda T, Niu J, et al. ABCC3 and OCT1 genotypes influence pharmacokinetics of morphine in children [J]. Pharmacogenomics, 2014, 15(10): 1297-1309.
[6]付孟龙, 周宏灏. MDR1基因多态性及其临床相关性 [J]. 中国临床药理学与治疗学, 2016, 21(4): 463-469.
[7]Lee MG, Kim HJ, Lee KH,et al. The influence of genotype polymorphism on morphine analgesic effect for postoperative pain in children [J]. Korean J Pain, 2016, 29(1): 34-39.
[8]Sia AT, Lim Y, Lim EC, et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia [J]. Anesthesiology, 2008, 109(3): 520-526.
[9]Nielsen LM, Sverrisdóttir E, Stage TB, et al. Lack of genetic association between OCT1, ABCB1, and UGT2B7 variants and morphine pharmacokinetics [J]. Eur J Pharm Sci, 2017, 99:337-342.
[10]Tzvetkov MV, dos Santos Pereira JN, Meineke I, et al. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration [J]. Biochem Pharmacol, 2013, 86(5): 666-678.
[11]Dean L. Codeine therapy and CYP2D6 genotype[M] //Pratt V, Mcleod H, Dean L, et al. Medical genetics summaries. Bethesda (MD). 2012.
[12]Gasche Y, Daali Y, Fathi M, et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism [J]. N Engl J Med, 2004, 351(27): 2827-2831.
[13]Ciszkowski C, Madadi P, Phillips MS, et al. Codeine, ultrarapid-metabolism genotype, and postoperative death [J]. N Engl J Med, 2009, 361(8): 827-828.
[14]Friedrichsdorf SJ, Nugent AP, Strobl AQ. Codeine-associated pediatric deaths despite using recommended dosing guidelines: three case reports [J]. J Opioid Manag, 2013, 9(2): 151-155.
[15]Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update[J]. Clin Pharmacol Ther, 2014, 95(4): 376-382.
[16]Baber M, Chaudhry S, Kelly L, et al. The pharmacogenetics of codeine pain relief in the postpartum period [J]. Pharmacogenomics J, 2015, 15(5): 430-435.
[17]Bell GC, Donovan KA, Mcleod HL. Clinical implications of opioid pharmacogenomics in patients with cancer [J]. Cancer Control, 2015, 22(4): 426-432.
[18]Tanaka N, Naito T, Yagi T, et al. Impact of CYP3A5*3 on plasma exposure and urinary excretion of fentanyl and norfentanyl in the early postsurgical period[J].Ther Drug Monit, 2014, 36(3): 345-352.
[19]Ishida T, Naito T, Sato H, et al. Relationship between the plasma fentanyl and serum 4beta-hydroxycholesterol based on CYP3A5 genotype and gender in patients with cancer pain [J]. Drug Metab Pharmacokinet, 2016, 31(3): 242-248.
[20]Koolen SL, Van der Rijt CC. Is there a role for pharmacogenetics in the dosing of fentanyl [J] ? Pharmacogenomics, 2017, 18(5): 417-419.
[21]Mieda T, Nishizawa D, Nakagawa H, et al. Genome-wide association study identifies candidate loci associated with postoperative fentanyl requirements after laparoscopic-assisted colectomy [J]. Pharmacogenomics, 2016, 17(2): 133-145.
[22]Hohmann N, Kocheise F, Carls A, et al. Midazolam microdose to determine systemic and pre-systemic metabolic CYP3A activity in humans [J]. Br J Clin Pharmacol, 2015, 79(2): 278-285.
[23]Seng KY, Hee KH, Soon GH, et al. CYP3A5*3 and bilirubin predict midazolam population pharmacokinetics in Asian cancer patients [J]. J Clin Pharmacol, 2014, 54(2): 215-224.
[24]De Jonge H, Elens L, de loor H, et al. The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients [J]. Pharmacogenomics J, 2015, 15(2): 144-152.
[25]Elens L, Nieuweboer AJ, Clarke SJ, et al. Impact of POR*28 on the clinical pharmacokinetics of CYP3A phenotyping probes midazolam and erythromycin [J]. Pharmacogenet Genomics, 2013, 23(3): 148-155.
[26]Mikstacki A, Skrzypczak-Zielinska M, et al. The impact of genetic factors on response to anaesthetics [J]. Adv Med Sci, 2013, 58(1): 9-14.
[27]Mourao AL, DE abreu FG, Fiegenbaum M. Impact of the cytochrome P450 2B6 (CYP2B6) gene polymorphism c.516G>T (rs3745274) on propofol dose variability [J]. Eur J Drug Metab Pharmacokinet, 2016, 41(5): 511-515.
[28]Eugene AR.CYP2B6 genotype guided dosing of propofol anesthesia in the elderly based on nonparametric population pharmacokinetic modeling and simulations[J]. Int J Clin Pharmacol Toxicol, 2017, 6(1): 242-249.
[29]Fujii J, Otsu K, Zorzato F, et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia [J]. Science, 1991, 253(5018): 448-451.
[30]Rosenberg H, Pollock N, Schiemann A, et al. Malignant hyperthermia: a review [J]. Orphanet J Rare Dis, 2015, 10: 93.
[31]Alvarellos ML, McDonagh EM, Patel S, et al.PharmGKB summary: succinylcholine pathway, pharmacokinetics/pharmacodynamics [J]. Pharmacogenet Genomics, 2015, 25(12): 622-630.
[32]Garcia DF, Oliveira TG, Molfetta GA, et al. Biochemical and genetic analysis of butyrylcholinesterase (BChE) in a family, due to prolonged neuromuscular blockade after the use of succinylcholine [J]. Genet Mol Biol, 2011, 34(1): 40-44.
[33]Gatke MR, Bundgaard JR, Viby-mogensen J. Two novel mutations in the BCHE gene in patients with prolonged duration of action of mivacurium or succinylcholine during anaesthesia [J]. Pharmacogenet Genomics, 2007, 17(11): 995-999.
[34]Wichmann S, Faerk G, Bundgaard JR, et al. Patients with prolonged effect of succinylcholine or mivacurium had novel mutations in the butyrylcholinesterase gene [J]. Pharmacogenet Genomics, 2016, 26(7): 351-356.
[35]Costa CC, Coelho EB, Lanchote VL, et al. The SLCO1A2 -189-188InsA polymorphism reduces clearance of rocuronium in patients submitted to elective surgeries [J]. Eur J Clinl Pharmacol, 2017, 73(8): 957-963.
[36]Mei Y, Wang SY, Li Y, et al. Role of SLCO1B1, ABCB1, and CHRNA1 gene polymorphisms on the efficacy of rocuronium in Chinese patients [J]. J Clin Pharmacol, 2015, 55(3): 261-268.
[37]Bell GC, Caudle KE, Whirl-carrillo M, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron [J]. Clin Pharmacol Ther, 2017, 102(2): 213-218.
[38]He H, Yin JY, Xu YJ, et al. Association of ABCB1 polymorphisms with the efficacy of ondansetron in chemotherapy-induced nausea and vomiting [J]. Clin Ther, 2014, 36(8): 1242-1252 e2.
[39]Farhat K, Iqbal J, Waheed A, et al.Association of anti-emetic efficacy of ondansetron with G2677T polymorphism in a drug transporter gene ABCB1 in pakistani population [J]. J Coll Physicians Surg Pak, 2015, 25(7): 486-490.
[40]Farhat K, Waheed A, Hussain A, et al. Influence of genetic variations in ABCB1 on the clinical efficacy of ondansetron- A pharmacogenetic analysis of Pakistani population [J][J]. J Pak Med Assoc, 2015, 65(9): 963-966.
[41]郭成贤, 王晶, 李金高, 等.临床药物基因组学应用现状[J].中国临床药理学与治疗学, 2016, 21(4): 458-462. |