中国临床药理学与治疗学 ›› 2026, Vol. 31 ›› Issue (1): 96-106.doi: 10.12092/j.issn.1009-2501.2026.01.011
沈小平1,2(
), 吴东2, 于丽丽1,3,*(
), 吴斌1,2,*(
)
收稿日期:2025-07-15
修回日期:2025-09-18
出版日期:2026-01-26
发布日期:2026-02-13
通讯作者:
于丽丽,吴斌
E-mail:shenxp1985@163.com;llyu@must.edu.mo;wubin621011@126.com
作者简介:沈小平,男,在读博士研究生,主治医师,研究方向:中医药防治慢性气道炎症性疾病的基础和临床研究。E-mail:基金资助:
Xiaoping SHEN1,2(
), Dong WU2, Lili YU1,3,*(
), Bin WU1,2,*(
)
Received:2025-07-15
Revised:2025-09-18
Online:2026-01-26
Published:2026-02-13
Contact:
Lili YU,Bin WU
E-mail:shenxp1985@163.com;llyu@must.edu.mo;wubin621011@126.com
摘要:
哮喘作为一种以气道慢性炎症、气道高反应性及重塑为特征的异质性疾病,其病理机制涉及多种免疫细胞与结构细胞的复杂交互作用。近年研究揭示,糖酵解与哮喘的发病机制、严重程度密切相关,各种免疫细胞中异常的糖酵解代谢可通过诱导先天性和适应性免疫反应失调来促进哮喘的发病机制。糖酵解终产物的乳酸直接介导了乳酸化修饰,进而调控表观遗传与信号通路,在Th2型炎症、巨噬细胞活化及气道重塑中发挥关键作用,可能成为哮喘病理进程中的潜在的调控节点。本综述讨论了糖酵解-乳酸化在哮喘中的潜在作用和机制,并分析靶向糖酵解-乳酸化通路作为哮喘治疗新策略的可能性,为未来的研究提供参考和方向。
中图分类号:
沈小平, 吴东, 于丽丽, 吴斌. 糖酵解-乳酸化修饰在哮喘中的潜在作用与治疗展望[J]. 中国临床药理学与治疗学, 2026, 31(1): 96-106.
Xiaoping SHEN, Dong WU, Lili YU, Bin WU. Potential role and therapeutic prospects of glycolysis-lactylation modification in asthma[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 96-106.
图 1
Fig.1 Mechanism of glycolysis-lactate metabolism and lactylation in cells GLUT: glucose transporter; MCT: monocarboxylate transporter; LDH: lactate dehydrogenase; MGO: methylglyoxal; LGSH: S-D-lactoylglutathione; GLO1: glyoxalase 1; KAT: lysine acetyltransferase. This diagram was created using BioGDP.com.
| Target | Drug | References |
| LDHA | FX11, Oxalate, GSK2837808A | [ |
| HK2 | Bergenin, 3-BP, 2-Deoxy-D-glucose (2-DG) | [ |
| PFKFB3 | 3PO | [ |
| MCT | Phloretin, Quercetin, BAY-8002, 7ACC, AR-C155858, AZD3965, CHC, Syrosingopine | [ |
| P300 | A-485 | [ |
表 1
Table 1 Targeted therapeutics for glycolysis-lactylation
| Target | Drug | References |
| LDHA | FX11, Oxalate, GSK2837808A | [ |
| HK2 | Bergenin, 3-BP, 2-Deoxy-D-glucose (2-DG) | [ |
| PFKFB3 | 3PO | [ |
| MCT | Phloretin, Quercetin, BAY-8002, 7ACC, AR-C155858, AZD3965, CHC, Syrosingopine | [ |
| P300 | A-485 | [ |
| 1 |
Asher MI, García-Marcos L, Pearce NE, et al. Trends in worldwide asthma prevalence[J]. Eur Respir J, 2020, 56 (6): 2002094.
doi: 10.1183/13993003.02094-2020 |
| 2 |
Porsbjerg C, Melén E, Lehtimäki L, et al. Asthma[J]. Lancet (london, England), 2023, 401 (10379): 858- 873.
doi: 10.1016/S0140-6736(22)02125-0 |
| 3 |
Asher MI, Rutter CE, Bissell K, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: global asthma network phase I cross-sectional study[J]. Lancet (london, England), 2021, 398 (10311): 1569- 1580.
doi: 10.1016/S0140-6736(21)01450-1 |
| 4 |
Yu J, Xu L, Han A, et al. The epidemiology of asthma in mainland china: a systematic review and meta-analysis[J]. BMC Public Health, 2024, 24 (1): 2888.
doi: 10.1186/s12889-024-20330-1 |
| 5 |
Yuan L, Tao J, Wang J, et al. Global, regional, national burden of asthma from 1990 to 2021, with projections of incidence to 2050: a systematic analysis of the global burden of disease study 2021[J]. Eclinicalmedicine, 2025, 80, 103051.
doi: 10.1016/j.eclinm.2024.103051 |
| 6 |
Qin Z, Chen Y, Wang Y, et al. Immunometabolism in the pathogenesis of asthma[J]. Immunology, 2024, 171 (1): 1- 17.
doi: 10.1111/imm.13688 |
| 7 |
Li X, Qi S, Jiang Y, et al. Identification and validation of PARK7 as a novel mitochondria-related signature associated with immune microenvironment in asthma[J]. Int Immunopharmacol, 2025, 157, 114750.
doi: 10.1016/j.intimp.2025.114750 |
| 8 | Almeida L, Dhillon-LaBrooy A, Carriche G, et al. CD4 T-cell differentiation and function: unifying glycolysis, fatty acid oxidation, polyamines NAD+ mitochondria[J]. J Allergy Clin Immunol, 2021, 148 (1): 16- 32. |
| 9 |
Liu S, Liao S, Liang L, et al. The relationship between CD4+ T cell glycolysis and their functions[J]. Trends Endocrinol Metab, 2023, 34 (6): 345- 360.
doi: 10.1016/j.tem.2023.03.006 |
| 10 | Alladina J, Smith NP, Kooistra T, et al. A human model of asthma exacerbation reveals transcriptional programs and cell circuits specific to allergic asthma [J]. Sci Immunol, 2023, 8(83): eabq6352. |
| 11 | Noe JT, Rendon BE, Geller AE, et al. Lactate supports a metabolic-epigenetic link in macrophage polarization [J]. Sci Adv, 2021, 7(46): eabi8602. |
| 12 |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574 (7779): 575- 580.
doi: 10.1038/s41586-019-1678-1 |
| 13 |
Wang W, Zheng F, Lin C, et al. Changes in energy metabolism and macrophage polarization: Potential mechanisms of arsenic-induced lung injury[J]. Ecotoxicol Environ Saf, 2020, 204, 110948.
doi: 10.1016/j.ecoenv.2020.110948 |
| 14 |
Antus B, Barta I, Kullmann T, et al. Assessment of exhaled breath condensate pH in exacerbations of asthma and chronic obstructive pulmonary disease: a longitudinal study[J]. Am J Respir Crit Care Med, 2010, 182 (12): 1492- 1497.
doi: 10.1164/rccm.201003-0451OC |
| 15 |
Ostroukhova M, Goplen N, Karim MZ, et al. The role of low-level lactate production in airway inflammation in asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302 (3): L300- 307.
doi: 10.1152/ajplung.00221.2011 |
| 16 | Yang JQ, Kalim KW, Li Y, et al. RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation [J]. J Allergy Clin Immunol, 2016, 137(1): 231-245. e4. |
| 17 |
Shan L, Chen L, Shen W, et al. FOXK2 facilitates the airway remodeling during chronic asthma by promoting glycolysis in a SIRT2-dependent manner[J]. FASEB J, 2024, 38 (13): e23756.
doi: 10.1096/fj.202302284R |
| 18 |
Li H, Sun L, Gao P, et al. Lactylation in cancer: current understanding and challenges[J]. Cancer Cell, 2024, 42 (11): 1803- 1807.
doi: 10.1016/j.ccell.2024.09.006 |
| 19 | Zhang X, Liu Y, Rekowski MJ, et al. Lactylation of tau in human alzheimer’s disease brains[J]. Alzheimers Dement, 2025, 21 (2): e14481. |
| 20 |
Wan L, Zhang H, Liu J, et al. Lactylation and human disease[J]. Expert Rev Mol Med, 2025, 27, e10.
doi: 10.1017/erm.2025.3 |
| 21 |
Hu Y, He Z, Li Z, et al. Lactylation: the novel histone modification influence on gene expression, protein function, and disease[J]. Clin Epigenet, 2024, 16 (1): 72.
doi: 10.1186/s13148-024-01682-2 |
| 22 |
Schütterle DM, Hegner R, Temovska M, et al. Exclusive D-lactate-isomer production during a reactor-microbiome conversion of lactose-rich waste by controlling pH and temperature[J]. Water Res, 2024, 250, 121045.
doi: 10.1016/j.watres.2023.121045 |
| 23 |
Rabinowitz JD, Enerback S. Lactate: The ugly duckling of energy metabolism[J]. Nat Metab, 2020, 2 (7): 566- 571.
doi: 10.1038/s42255-020-0243-4 |
| 24 |
Yu C, Huang W, Zhou Z, et al. Short isoform thymic stromal lymphopoietin reduces inflammation and aerobic glycolysis of asthmatic airway epithelium by antagonizing long isoform thymic stromal lymphopoietin[J]. Respir Res, 2022, 23 (1): 75.
doi: 10.1186/s12931-022-01979-x |
| 25 |
DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis[J]. Proc Natl Acad Sci USA, 2007, 104 (49): 19345- 19350.
doi: 10.1073/pnas.0709747104 |
| 26 |
Soeters PB, Shenkin A, Sobotka L, et al. The anabolic role of the warburg, cori-cycle and crabtree effects in health and disease[J]. Clin Nutr, 2021, 40 (5): 2988- 2998.
doi: 10.1016/j.clnu.2021.02.012 |
| 27 |
Pinheiro C, Longatto-Filho A, Azevedo-Silva J, et al. Role of monocarboxylate transporters in human cancers: state of the art[J]. J Bioenerg Biomembr, 2012, 44 (1): 127- 139.
doi: 10.1007/s10863-012-9428-1 |
| 28 |
Pucino V, Cucchi D, Mauro C. Lactate transporters as therapeutic targets in cancer and inflammatory diseases[J]. Expert Opin Ther Targets, 2018, 22 (9): 735- 743.
doi: 10.1080/14728222.2018.1511706 |
| 29 |
Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond[J]. Pflugers Arch, 2004, 447 (5): 619- 628.
doi: 10.1007/s00424-003-1067-2 |
| 30 |
Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29 (1): 133- 146.
doi: 10.1038/s41418-021-00841-9 |
| 31 |
Yang YH, Wang QC, Kong J, et al. Global profiling of lysine lactylation in human lungs[J]. Proteomics, 2023, 23 (15): 2200437.
doi: 10.1002/pmic.202200437 |
| 32 | Zhu R, Ye X, Lu X, et al. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion [J]. Cell Metab, 2025, 37(2): 361-376. e7. |
| 33 |
Lu Z, Fang P, Li S, et al. Lactylation of histone H3k18 and Egr1 promotes endothelial glycocalyx degradation in sepsis‐induced acute lung injury[J]. Adv Sci, 2024, 12 (7): 2407064.
doi: 10.1002/advs.202407064 |
| 34 |
Niu Z, Chen C, Wang S, et al. HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription[J]. Nat Commun, 2024, 15, 3561.
doi: 10.1038/s41467-024-47900-6 |
| 35 | Gaffney DO, Jennings EQ, Anderson CC, et al. Non-enzymatic lysine lactoylation of glycolytic enzymes [J]. Cell Chem Biol, 2020, 27(2): 206-213. e6. |
| 36 |
Pucino V, Certo M, Bulusu V, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring[J]. Cell Metab, 2019, 30 (6): 1055- 1074.
doi: 10.1016/j.cmet.2019.10.004 |
| 37 |
孔春雪, 刘其器, 张立伟, 等. 孟鲁司特钠通过PHD2/HIF-1α通路抑制哮喘小鼠气道炎症反应[J]. 实用医学杂志, 2025, 41 (5): 664- 669.
doi: 10.3969/j.issn.1006-5725.2025.05.007 |
| 38 |
Ho WE, Xu YJ, Xu F, et al. Metabolomics reveals altered metabolic pathways in experimental asthma[J]. Am J Respir Cell Mol Biol, 2013, 48 (2): 204- 211.
doi: 10.1165/rcmb.2012-0246OC |
| 39 |
Manuel AM, van de Wetering C, MacPherson M, et al. Dysregulation of pyruvate kinase M2 promotes inflammation in a mouse model of obese allergic asthma[J]. Am J Respir Cell Mol Biol, 2021, 64 (6): 709- 721.
doi: 10.1165/rcmb.2020-0512OC |
| 40 |
van de Wetering C, Manuel AM, Sharafi M, et al. Glutathione-S-transferase P promotes glycolysis in asthma in association with oxidation of pyruvate kinase M2[J]. Redox Biol, 2021, 47, 102160.
doi: 10.1016/j.redox.2021.102160 |
| 41 |
Lv X, Wang W, Dong H, et al. Glycolysis in asthma: its role and potential as a diagnostic or therapeutic target[J]. Int Immunopharmacol, 2025, 148, 114143.
doi: 10.1016/j.intimp.2025.114143 |
| 42 |
Ivanova O, Richards LB, Vijverberg SJ, et al. What did we learn from multiple omics studies in asthma?[J]. Allergy, 2019, 74 (11): 2129- 2145.
doi: 10.1111/all.13833 |
| 43 |
Boonpiyathad T, Sozener ZC, Satitsuksanoa P, et al. Immunologic mechanisms in asthma[J]. Semin Immunol, 2019, 46, 101333.
doi: 10.1016/j.smim.2019.101333 |
| 44 |
Hudey SN, Ledford DK, Cardet JC. Mechanisms of non-type 2 asthma[J]. Curr Opin Immunol, 2020, 66, 123- 128.
doi: 10.1016/j.coi.2020.10.002 |
| 45 |
Dorscheid D, Gauvreau GM, Georas SN, et al. Airway epithelial cells as drivers of severe asthma pathogenesis[J]. Mucosal Immunol, 2025, 18 (3): 524- 536.
doi: 10.1016/j.mucimm.2025.03.003 |
| 46 |
Porsbjerg CM, Sverrild A, Lloyd CM, et al. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics[J]. Eur Respir J, 2020, 56 (5): 2000260.
doi: 10.1183/13993003.00260-2020 |
| 47 | Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184 (9): 2521- 2522. |
| 48 |
Bryant N, Muehling LM. T-cell responses in asthma exacerbations[J]. Ann Allergy Asthma Immunol, 2022, 129 (6): 709- 718.
doi: 10.1016/j.anai.2022.07.027 |
| 49 |
Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation[J]. Front Immunol, 2023, 14, 1211221.
doi: 10.3389/fimmu.2023.1211221 |
| 50 |
Chen X, Lin H, Yang D, et al. Early-life undernutrition reprograms CD4(+) T-cell glycolysis and epigenetics to facilitate asthma[J]. J Allergy Clin Immunol, 2019, 143 (6): 2038- 2051.
doi: 10.1016/j.jaci.2018.12.999 |
| 51 |
Matheson MC, DOA, Burgess JA, et al. Preterm birth and low birth weight continue to increase the risk of asthma from age 7 to 43[J]. J Asthma, 2017, 54 (6): 616- 623.
doi: 10.1080/02770903.2016.1249284 |
| 52 |
Canoy D, Pekkanen J, Elliott P, et al. Early growth and adult respiratory function in men and women followed from the fetal period to adulthood[J]. Thorax, 2007, 62 (5): 396- 402.
doi: 10.1136/thx.2006.066241 |
| 53 | Lopez KA, Nehring HP, Krause FF, et al. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells[J]. EMBO Rep, 2022, 23 (12): e54685. |
| 54 |
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors[J]. Exp Mol Med, 2023, 55 (9): 1872- 1884.
doi: 10.1038/s12276-023-01021-0 |
| 55 |
Zhang X, Liu J, Li X, et al. Blocking the HIF-1α/glycolysis axis inhibits allergic airway inflammation by reducing ILC2 metabolism and function[J]. Allergy, 2025, 80 (5): 1309- 1334.
doi: 10.1111/all.16361 |
| 56 |
Helou DG, Shafiei-Jahani P, Lo R, et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity[J]. Nat Commun, 2020, 11, 3998.
doi: 10.1038/s41467-020-17813-1 |
| 57 | Jones N, Vincent EE, Felix LC, et al. Interleukin-5 drives glycolysis and reactive oxygen species-dependent citric acid cycling by eosinophils[J]. Allergy, 2020, 75 (6): 1361- 1370. |
| 58 |
Kottyan LC, Collier AR, Cao KH, et al. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner[J]. Blood, 2009, 114 (13): 2774- 2782.
doi: 10.1182/blood-2009-05-220681 |
| 59 |
Huang W, Zhang Y, Li Y, et al. Vitamin D impedes eosinophil chemotaxis via inhibiting glycolysis-induced CCL26 expression in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Cell Commun Signal, 2025, 23 (1): 104.
doi: 10.1186/s12964-025-02078-2 |
| 60 |
Weiss ST, Mirzakhani H, Carey VJ, et al. Prenatal vitamin D supplementation to prevent childhood asthma: 15-year results from the vitamin D antenatal asthma reduction trial (VDAART)[J]. J Allergy Clin Immunol, 2024, 153 (2): 378- 388.
doi: 10.1016/j.jaci.2023.10.003 |
| 61 |
Gan PXL, Liao W, Lim HF, et al. Dexamethasone protects against aspergillus fumigatus-induced severe asthma via modulating pulmonary immunometabolism[J]. Pharmacol Res, 2023, 196, 106929.
doi: 10.1016/j.phrs.2023.106929 |
| 62 |
Cai Y, Sugimoto C, Arainga M, et al. In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans[J]. J Immunol, 2014, 192 (6): 2821- 2829.
doi: 10.4049/jimmunol.1302269 |
| 63 |
Zhang K, Guo J, Yan W, et al. Macrophage polarization in inflammatory bowel disease[J]. Cell Commun Signal, 2023, 21 (1): 367.
doi: 10.1186/s12964-023-01386-9 |
| 64 |
Robbe P, Draijer C, Borg TR, et al. Distinct macrophage phenotypes in allergic and nonallergic lung inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308 (4): L358- 367.
doi: 10.1152/ajplung.00341.2014 |
| 65 |
He L, Jhong JH, Chen Q, et al. Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors[J]. Cell Rep, 2021, 37 (5): 109955.
doi: 10.1016/j.celrep.2021.109955 |
| 66 |
Zhao Q, Chu Z, Zhu L, et al. 2-deoxy-d-glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation[J]. Front Immunol, 2017, 8, 637.
doi: 10.3389/fimmu.2017.00637 |
| 67 |
Chen N, Xie QM, Song SM, et al. Dexamethasone protects against asthma via regulating hif-1α-glycolysis-lactate axis and protein lactylation[J]. Int Immunopharmacol, 2024, 131, 111791.
doi: 10.1016/j.intimp.2024.111791 |
| 68 |
Li J, Zeng G, Zhang Z, et al. Urban airborne PM(2.5) induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages[J]. Ecotoxicol Env Saf, 2024, 273, 116162.
doi: 10.1016/j.ecoenv.2024.116162 |
| 69 |
Wang J, Yang P, Yu T, et al. Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages[J]. Int J Biol Sci, 2022, 18 (16): 6210- 6225.
doi: 10.7150/ijbs.75434 |
| 70 |
Crisford H, Sapey E, Rogers GB, et al. Neutrophils in asthma: the good, the bad and the bacteria[J]. Thorax, 2021, 76 (8): 835- 844.
doi: 10.1136/thoraxjnl-2020-215986 |
| 71 | Moore WC, Hastie AT, Li X, et al. Sputum neutrophils are associated with more severe asthma phenotypes using cluster analysis[J]. J Allergy Clin Immunol, 2014, 133 (6): 1557- 1563. |
| 72 |
De Volder J, Vereecke L, Joos G, et al. Targeting neutrophils in asthma: a therapeutic opportunity?[J]. Biochem Pharmacol, 2020, 182, 114292.
doi: 10.1016/j.bcp.2020.114292 |
| 73 |
Gu W, Huang C, Chen G, et al. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma[J]. Respir Res, 2024, 25 (1): 290.
doi: 10.1186/s12931-024-02923-x |
| 74 | Pulikkot S, Zhao M, Fan Z. Real-time measurement of the mitochondrial bioenergetic profile of neutrophils [J]. J Vis Exp Jove, 2023(196): 10.3791/64971. |
| 75 |
Awasthi D, Nagarkoti S, Sadaf S, et al. Glycolysis dependent lactate formation in neutrophils: a metabolic link between NOX-dependent and independent NETosis[J]. Biochim Biophys Acta (BBA) - Mol Basis Dis, 2019, 1865 (12): 165542.
doi: 10.1016/j.bbadis.2019.165542 |
| 76 |
Qiu CZ, Zhou R, Zhang HY, et al. Histone lactylation-ROS loop contributes to light exposure-exacerbated neutrophil recruitment in zebrafish[J]. Commun Biol, 2024, 7 (1): 887.
doi: 10.1038/s42003-024-06543-5 |
| 77 |
Xie X, Wen C, Peng Q, et al. H3K9/18 lactylation regulates DNA damage due to nickel exposure in human bronchial epithelial cells[J]. Toxicol Appl Pharmacol, 2025, 499, 117347.
doi: 10.1016/j.taap.2025.117347 |
| 78 |
Ma N, Wang L, Meng M, et al. D-sodium lactate promotes the activation of NF-κB signaling pathway induced by lipopolysaccharide via histone lactylation in bovine mammary epithelial cells[J]. Microb Pathog, 2025, 199, 107198.
doi: 10.1016/j.micpath.2024.107198 |
| 79 |
Li K, Li M, Li W, et al. Airway epithelial regeneration requires autophagy and glucose metabolism[J]. Cell Death Dis, 2019, 10 (12): 875.
doi: 10.1038/s41419-019-2111-2 |
| 80 |
Chen X, Liu L, Kang S, et al. The lactate dehydrogenase (LDH) isoenzyme spectrum enables optimally controlling T cell glycolysis and differentiation[J]. Sci Adv, 2023, 9 (12): eadd9554.
doi: 10.1126/sciadv.add9554 |
| 81 |
Xu J, Li J, Yu Z, et al. HMGB1 promotes HLF-1 proliferation and ECM production through activating HIF1-α-regulated aerobic glycolysis[J]. Pulm Pharmacol Ther, 2017, 45, 136- 141.
doi: 10.1016/j.pupt.2017.05.015 |
| 82 |
Wu D, Wang S, Wang F, et al. Lactate dehydrogenase a (LDHA)-mediated lactate generation promotes pulmonary vascular remodeling in pulmonary hypertension[J]. J Transl Med, 2024, 22 (1): 738.
doi: 10.1186/s12967-024-05543-7 |
| 83 |
Mi Y, Tang M, Wu Q, et al. NMAAP1 regulated macrophage polarizion into M1 type through glycolysis stimulated with BCG[J]. Int Immunopharmacol, 2024, 126, 111257.
doi: 10.1016/j.intimp.2023.111257 |
| 84 |
Yuan Y, Fan G, Liu Y, et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis[J]. Cell Mol Immunol, 2022, 19 (4): 504- 515.
doi: 10.1038/s41423-021-00806-5 |
| 85 |
Ji X, Nie C, Yao Y, et al. S100A8/9 modulates perturbation and glycolysis of macrophages in allergic asthma mice[J]. PeerJ, 2024, 12, e17106.
doi: 10.7717/peerj.17106 |
| 86 |
Gong Y, Lan H, Yu Z, et al. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells[J]. Biochem Biophys Res Commun, 2017, 491 (2): 522- 529.
doi: 10.1016/j.bbrc.2017.05.173 |
| 87 |
Telang S, Clem BF, Klarer AC, et al. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses T cell activation[J]. J Transl Med, 2012, 10 (1): 95.
doi: 10.1186/1479-5876-10-95 |
| 88 |
Felmlee MA, Jones RS, Rodriguez-Cruz V, et al. Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease[J]. Pharmacol Rev, 2020, 72 (2): 466- 485.
doi: 10.1124/pr.119.018762 |
| 89 |
Shi S, Li JC, Zhou XY, et al. Transport mechanism and drug discovery of human monocarboxylate transporter 1[J]. Acta Pharmacol Sin, 2025, 46 (8): 2323- 2333.
doi: 10.1038/s41401-025-01517-7 |
| 90 |
Cui H, Xie N, Banerjee S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol, 2021, 64 (1): 115- 125.
doi: 10.1165/rcmb.2020-0360OC |
| 91 |
Zong Z, Ren J, Yang B, et al. Emerging roles of lysine lactyltransferases and lactylation[J]. Nat Cell Biol, 2025, 27 (4): 563- 574.
doi: 10.1038/s41556-025-01635-8 |
| 92 |
Liu S, He Y, Jin L, et al. H3K18 lactylation-mediated SIX1 upregulation contributes to silica-induced epithelial-mesenchymal transition in airway epithelial cells[J]. Toxicology, 2025, 514, 154109.
doi: 10.1016/j.tox.2025.154109 |
| 93 |
Li X, Xie L, Zhou L, et al. Bergenin inhibits tumor growth and overcomes radioresistance by targeting aerobic glycolysis[J]. Am J Chin Med, 2023, 51 (7): 1905- 1925.
doi: 10.1142/S0192415X23500842 |
| 94 |
Abdali A, Baci D, Damiani I, et al. In vitro angiogenesis inhibition with selective compounds targeting the key glycolytic enzyme PFKFB3[J]. Pharmacol Res, 2021, 168, 105592.
doi: 10.1016/j.phrs.2021.105592 |
| 95 |
Cui L, Yang Y, Hao Y, et al. Nanotechnology-based therapeutics for airway inflammatory diseases[J]. Clin Rev Allergy Immunol, 2025, 68 (1): 12.
doi: 10.1007/s12016-024-09019-w |
| 96 |
Wang X, Wang L, Hao Q, et al. Harnessing glucose metabolism with nanomedicine for cancer treatment[J]. Theranostics, 2024, 14 (17): 6831- 6882.
doi: 10.7150/thno.100036 |
| 97 |
Jiang K, Liu H, Chen X, et al. Reprogramming of glucose metabolism by nanocarriers to improve cancer immunotherapy: recent advances and applications[J]. Int J Nanomed, 2025, 20, 4201- 4234.
doi: 10.2147/ijn.s513207 |
| [1] | 王志旺, 张悦, 全苹, 赵跃, 田蓓, 段海婧, 王瑞琼. 白介素-17A介导的信号网络调控哮喘气道重塑的研究新进展[J]. 中国临床药理学与治疗学, 2026, 31(1): 88-95. |
| [2] | 蒋艳, 宋沧桑, 王国徽, 毛盼盼, 李兴德. 以lncRNA和miRNA为主在肝癌代谢重编程调控中的作用和机制[J]. 中国临床药理学与治疗学, 2025, 30(9): 1260-1271. |
| [3] | 杨更强, 李洋洋, 李启杨, 张尚祖, 杨玥, 周婷, 张利英. PX-478通过调节HIF-1α介导的糖酵解增强肺癌放疗效果的研究[J]. 中国临床药理学与治疗学, 2025, 30(7): 935-941. |
| [4] | 鲍八虎, 刘维英, 叶育才, 陈国荣, 孙静梓, 胡澳燕. miRNA与哮喘气道炎症及内型的研究进展[J]. 中国临床药理学与治疗学, 2024, 29(10): 1194-1200. |
| [5] | 王思宇, 李佳蔚, 李程豪, 李玲, 郭晴阳, 邱璐, 周世琴, 刘永琦. 乳酸脱氢酶A在消化系统肿瘤中的作用及相关药物研究进展[J]. 中国临床药理学与治疗学, 2023, 28(4): 445-454. |
| [6] | 马月, 马旺博, 周智华, 常静雯, 范方田. 槲皮素干预肾间质成纤维细胞糖酵解抗肾间质纤维化机制研究[J]. 中国临床药理学与治疗学, 2023, 28(2): 121-129. |
| [7] | 杨贺淳, 史道华 . 调控肿瘤糖代谢重编程改善肿瘤耐药的小分子抑制剂研究进展[J]. 中国临床药理学与治疗学, 2021, 26(7): 836-840. |
| [8] | 李静, 马丽娟, 袁圆, 王捷, 郁长治, 赵军. 吸入性糖皮质激素布地奈德相关基因多态性与哮喘疗效的关系[J]. 中国临床药理学与治疗学, 2021, 26(11): 1250-1258. |
| [9] | 王瑾,杨毅,郭丽,李文燕,阮水良. 普罗布考通过调节肝癌细胞HepG2代谢重编程逆转Warburg效应抑制其转移和侵袭的机制研究[J]. 中国临床药理学与治疗学, 2018, 23(6): 601-607. |
| [10] | 刘玲玲,孙一鸣,赵素容,刘 浩. 3-溴丙酮酸联合多西他赛对人乳腺癌MDA-MB-231细胞增殖和凋亡的影响[J]. 中国临床药理学与治疗学, 2016, 21(8): 863-867. |
| [11] | 郑小平, 南淼, 王和敏, 余献丹, 郑阿迈. 噻托溴铵联合沙美特罗/氟替卡松对老年支气管哮喘患者肺通气功能的改善[J]. 中国临床药理学与治疗学, 2014, 19(10): 1163-1166. |
| [12] | 郑美梅, 王方剑, 岳铁刚, 董丽妍, 段成城. 阿奇霉素对支气管哮喘患者肺功能及血清结缔组织生长因子的影响[J]. 中国临床药理学与治疗学, 2013, 18(2): 194-197. |
| [13] | 沈巨信, 秦娥, 李明晖, 孙健, 周国忠. 呼出气冷凝液白三烯、8异前列腺素、硝酸盐/亚硝酸盐检测在哮喘中的应用及孟鲁司特对炎症指标的影响[J]. 中国临床药理学与治疗学, 2012, 17(7): 802-805. |
| [14] | 杨远, 彭小华, 林勇. CpG ODN对小鼠哮喘模型气道炎症及信号转导子和转录激活子6(STAT6)表达的影响[J]. 中国临床药理学与治疗学, 2010, 15(2): 149-153. |
| [15] | 黄翠萍, 杨和平, 杨颖乔. 黄芪注射液对哮喘大鼠p38蛋白激酶和白细胞介素-5表达的影响[J]. 中国临床药理学与治疗学, 2008, 13(8): 900-904. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||