[1]Thomas DW,Burns J,Audette J,et al.Clinical development success rates 2006-2015[J]. San Diego: Biomedtracker/Washington, DC: BIO/Bend: Amplion, 2016.
[2]Dimasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs[J]. J Health Econ, 2016, 47: 20-33.
[3]Dimasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs[J]. J Health Econ, 2003, 22(2): 151-185.
[4]Townsend MJ, Arron JR. Reducing the risk of failure: biomarker-guided trial design[J]. Nat Rev Drug Discov, 2016, 15(8): 517-518.
[5]Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework[J]. Nat Rev Drug Discov, 2014, 13(6): 419-431.
[6]Lalonde RL, Kowalski KG, Hutmacher MM, et al. Model-based drug development[J]. Clin Pharmacol Ther, 2007, 82(1): 21-32.
[7]Milligan PA, Brown MJ, Marchant B, et al. Model-based drug development: a rational approach to efficiently accelerate drug development[J]. Clin Pharmacol Ther, 2013, 93(6): 502-514.
[8]Dolgos H, Trusheim M, Gross D, et al. Translational medicine guide transforms drug development processes: the recent Merck experience[J]. Drug Discov Today, 2016, 21(3): 517-526.
[9]Subramanyam M, Goyal J. Translational biomarkers: from discovery and development to clinical practice[J]. Drug Discov Today Technol, 2016, 21-22: 3-10.
[10]Hurko O, Jones GK. Valuation of biomarkers[J]. Nat Rev Drug Discov, 2011, 10(4): 253-254.
[11]Parchment RE, Ferry-Galow KV, Doroshow JH. Integrating biomarkers in early-phase trials[M]. Kummar S, Takimoto C, editor, Novel designs of early phase trials for cancer therapeutics: Academic Press, 2018: 95-114.
[12]Parchment RE, Doroshow JH. Pharmacodynamic endpoints as clinical trial objectives to answer important questions in oncology drug development[J]. Semin Oncol, 2016, 43(4): 514-525.
[13]Morgan P, Van Der Graaf PH, Arrowsmith J, et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival[J]. Drug Discov Today, 2012, 17(9/10): 419-424.
[14]Normanno N, De Luca A, Maiello MR, et al. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in breast cancer: current status and future development [J]. Front Biosci, 2005, 1(10): 2611-2617.
[15]Dancey JE, Dobbin KK, Groshen S, et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents[J]. Clin Cancer Res, 2010, 16(6): 1745-1755.
[16]Cox GF. The art and science of choosing efficacy endpoints for rare disease clinical trials[J]. Am J Med Genet A, 2018, 176(4): 759-772.
[17]史军. 夯实早期临床研发贯通中国R&D的价值链[R]. 北京大学临床研究所"国际创新药物研发和管理高级课程(CCDRS)", 2019-7.
[18]Chen C. Opportunities and pitfalls in clinical proof-of-concept: principles and examples[J]. Drug Discov Today, 2018, 23(4): 776-787.
[19]Lowe PJ, Hijazi Y, Luttringer O, et al. On the anticipation of the human dose in first-in-man trials from preclinical and prior clinical information in early drug development[J]. Xenobiotica, 2007, 37(10/11): 1331-1354.
[20]Mclaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer[J]. JAMA Oncol, 2016, 2(1): 46-54.
[21]Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility[J]. Nat Biotechnol, 2006, 24(8): 971-983.
[22]Goodsaid F, Frueh F. Biomarker qualification pilot process at the US food and drug administration[J]. Aaps J, 2007, 9(1): E105-E108.
[23]Subramanyam M, Goyal J. Translational biomarkers: from discovery and development to clinical practice[J]. Drug Discov Today Technol, 2016, 21: 3-10.
[24]Lee JW, Devanarayan V, Barrett YC, et al. Fit-for-purpose method development and validation for successful biomarker measurement[J]. Pharm Res, 2006, 23(2): 312-328.
[25]Chau CH, Rixe O, Mcleod H, et al. Validation of analytic methods for biomarkers used in drug development[J]. Clin Cancer Res, 2008, 14(19): 5967-5976.
[26]Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development[J]. J Pharm Sci, 2002, 91(1): 18-31.
[27]Muller PY, Brennan FR. Safety Assessment and dose selection for first-in-human clinical trials with immunomodulatory monoclonal antibodies[J]. Clin Pharmacol Ther, 2009, 85(3): 247-258.
[28]Green CL, Stewart JJ, Hogerkorp CM, et al. Recommendations for the development and validation of flow cytometry-based receptor occupancy assays[J]. Cytometry B Clin Cytom, 2016, 90(2): 141-149.
[29]Pan WJ, Kock K, Rees WA, et al. Clinical pharmacology of AMG 181, a gut-specific human anti-alpha4beta7 monoclonal antibody, for treating inflammatory bowel diseases[J]. Br J Clin Pharmacol, 2014, 78(6): 1315-1333.
[30]Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. J Clin Oncol, 2010, 28(19): 3167-3175.
[31]Reilly M, Miller RM, Thomson MH, et al. Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody[J]. Clin Pharmacol Ther, 2013, 94(5): 593-600.
[32]Lebre MC, Vergunst CE, Choi IY, et al. Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis[J]. PLoS One, 2011, 6(7): e21772.
[33]Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers[J]. J Clin Pharmacol, 2014, 54(12): 1354-1361.
[34]Liang M, Schwickart M, Schneider AK, et al. Receptor occupancy assessment by flow cytometry as a pharmacodynamic biomarker in biopharmaceutical development[J]. Cytometry Part B-Clinical Cytometry, 2016, 90(2): 117-127.
[35]Schwickart M, Chavez C, Henderson S, et al. Evaluation of assay interference and interpretation of CXCR4 receptor occupancy results in a preclinical study with MEDI3185, a fully human antibody to CXCR4[J]. Cytometry Part B-Clinical Cytometry, 2016, 90(2): 209-219.
[36]Vey N, Bourhis JH, Boissel N, et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission[J]. Blood, 2012, 120(22): 4317-4323.
[37]Canonico B, Betti M, Luchetti F, et al. Flow cytometric profiles, biomolecular and morphological aspects of transfixed leukocytes and red cells[J]. Cytometry B Clin Cytom, 2010, 78(4): 267-278.
[38]Davis BH, Wood B, Oldaker T, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS-part I-rationale and aims[J]. Cytometry B Clin Cytom, 2013, 84(5): 282-285.
[39]Davis BH, Dasgupta A, Kussick S, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS-part II-preanalytical issues[J]. Cytometry B Clin Cytom, 2013, 84(5): 286-290.
[40]Tangri S, Vall H, Kaplan D, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS-part III-analytical issues[J]. Cytometry B Clin Cytom, 2013, 84(5): 291-308.
[41]Barnett D, Louzao R, Gambell P, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS-part IV-postanalytic considerations[J]. Cytometry B Clin Cytom, 2013, 84(5): 309-314.
[42]Wood B, Jevremovic D, Bene MC, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS-part V-assay performance criteria[J]. Cytometry B Clin Cytom, 2013, 84(5): 315-323.
[43]Fu J, Wang F, Dong LH, et al. Receptor occupancy measurement of anti-PD-1 antibody drugs in support of clinical trials[J]. Bioanalysis, 2019, 11(14): 1347-1358. |