Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2010, Vol. 15 ›› Issue (6): 705-714.
Previous Articles Next Articles
SHEN Jie1,2, XIE Hai-tang1, LIU Zhao-qian2
Received:
2009-12-03
Revised:
2010-01-09
Online:
2010-06-26
Published:
2020-09-16
CLC Number:
SHEN Jie, XIE Hai-tang, LIU Zhao-qian. Adrancement in pharmacogentics and hypenteasion medicine[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2010, 15(6): 705-714.
[1] Materson BJ. Variability in response to antihypertensive drugs[J]. Am J Med, 2007,120(4 Suppl 1):S10-20. [2] Arnett DK, Claas SA. Pharmacogenetics of antihypertensive treatment: detailing disciplinary dissonance[J]. Pharmacogenomics, 2009,10(8):1295-1307. [3] Bloem LJ, Manatunga AK, Tewksbury DA, et al. The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children[J]. J Clin Invest, 1995,95(3):948-953. [4] Hingorani AD, Jia H, Stevens PA, et al. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition[J]. J Hypertens, 1995,13(12 Pt 2):1602-1609. [5] Jiang X, Sheng H, Li J, et al. Association between renin-angiotensin system gene polymorphism and essential hypertension: a community-based study[J]. J Hum Hypertens, 2009,23(3):176-181. [6] Yu H, Lin S, Jin L, et al. Adenine/cytosine1166 polymorphism of the angiotensin II type 1 receptor gene and the antihypertensive response to angiotensin-converting enzyme inhibitors[J]. J Hypertens, 2009,12(Epub ahead of print) [7] Sugiyama T, Morita H, Kato N, et al. Lack of sex-specific effects on the association between angiotensin-converting enzyme gene polymorphism and hypertension in Japanese[J]. Hypertens Res, 1999,22(1):55-59. [8] McKenzie CA, Zhu X, Forrester TE, et al. A genome-wide search replicates evidence of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE) unlinked to the ACE gene[J]. BMC Med Genomics, 2008,1:23. [9] Baudin B. Angiotensin I-converting enzyme gene polymorphism and drug response[J]. Clin Chem Lab Med, 2000,38(9):853-856. [10] Hori Y, Takeyama Y, Ueda T, et al. Impaired transport of lipopolysaccharide across the hepatocytes in rats with cerulein-induced experimental pancreatitis[J]. Pancreas, 1998,16(2):148-153. [11] Mondorf UF, Russ A, Wiesemann A,et al. Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension[J]. Am J Hypertens, 1998,11(2):174-183. [12] Stavroulakis GA, Makris TK, Krespi PG, et al. Predicting response to chronic antihypertensive treatment with fosinopril: the role of angiotensin-converting enzyme gene polymorphism[J]. Cardiovasc Drugs Ther, 2000,14(4):427-432. [13] Liu Q, Lei H, Wang X. The relationship of angiotensin-converting enzyme gene to essential hypertension and drug treatment in Chongqing[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2000,17(5):340-342. [14] Caprioli J, Mele C, Mossali C, et al. Polymorphisms of EDNRB, ATG, and ACE genes in salt-sensitive hypertension[J]. Can J Physiol Pharmacol, 2008,86(8):505-510. [15] Miller JA, Thai K, Scholey JW. Angiotensin II type 1 receptor gene polymorphism predicts response to losartan and angiotensin II[J]. Kidney Int, 1999,56(6):2173-2180. [16] Ortlepp JR, Hanrath P, Mevissen V, et al. Variants of the CYP11B2 gene predict response to therapy with candesartan[J]. Eur J Pharmacol, 2002,445(1/2):151-152. [17] Redon J, Luque-Otero M, Martell N, et al. Renin-angiotensin system gene polymorphisms: relationship with blood pressure and microalbuminuria in telmisartan-treated hypertensive patients[J]. Pharmacogenomics J, 2005,5(1):14-20. [18] Cusi D, Barlassina C, Azzani T, et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension[J]. Lancet, 1997,349(9062):1353-1357. [19] Glorioso N, Manunta P, Filigheddu F, et al. The role of alpha-adducin poly morphism in blood pressure and sodium handling regulation may not be excluded by a negative association study[J]. Hypertension, 1999,34(4 Pt 1):649-654. [20] Kato N, Sugiyama T, Nabika T, et al. Lack of association between the alpha-adducin locus and essential hypertension in the Japanese population[J]. Hypertension, 1998,31(3):730-733. [21] Meckley LM, Veenstra DL. Screening for the alpha-adducin Gly460Trp variant in hypertensive patients: a cost-effectiveness analysis[J]. Pharmacogenet Genomics, 2006,16(2):139-147. [22] Sciarrone MT, Stella P, Barlassina C, et al. ACE and alpha-adducin polymorphism as markers of individual response to diuretic therapy[J]. Hypertension, 2003,41(3):398-403. [23] Lu LH, Chen H, Yu L. Association of alpha-adducin and angiotensin converting enzyme gene polymorphisms with salt-sensitive hypertension and early renal injury[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2008,25(2):132-135. [24] Brand E, Wang JG, Herrmann SM, et al. An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism[J]. J Hypertens, 2003,21(4):729-737. [25] Danoviz ME, Pereira AC, Mill JG, et al. Hypertension, obesity and GNB 3 gene variants[J]. Clin Exp Pharmacol Physiol, 2006,33(3):248-252. [26] Wang X, Bai H, Fan P, et al. Analysis of the GNB3 gene 825C/T polymorphism in non-obese and obese Chinese[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2008,25(6):670-674. [27] Maitland-van der Zee AH, Turner ST, Schwartz GL, et al. A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide[J]. Pharmacogenet Genomics, 2005,15(5):287-293. [28] Manunta P, Lavery G, Lanzani C, et al. Physiological interaction between alpha-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation[J]. Hypertension, 2008,52(2):366-372. [29] Turner ST, Bailey KR, Fridley BL, et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic[J]. Hypertension, 2008,52(2):359-65. [30] Rodwell GE, Sonu R, Zahn JM, et al. A transcriptional profile of aging in the human kidney[J]. PLoS Biol, 2004,2(12):e427. [31] Lanfear DE, Jones PG, Marsh S, et al. Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome[J]. JAMA, 2005,294(12):1526-33. [32] Kaye DM, Smirk B, Williams C, et al. Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure[J]. Pharmacogenetics, 2003,13(7):379-82. [33] Liu J, Liu ZQ, Yu BN, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension[J]. Clin Pharmacol Ther, 2006,80(1):23-32. [34] Johnson JA, Zineh I, Puckett BJ, et al. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol[J]. Clin Pharmacol Ther, 2003,74(1):44-52. [35] Liu J, Liu ZQ, Tan ZR, et al. Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol[J]. Clin Pharmacol Ther, 2003,74(4):372-379. [36] Sofowora GG, Dishy V, Muszkat M, et al. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade[J]. Clin Pharmacol Ther, 2003,73(4):366-371. [37] Lemaitre RN, Heckbert SR, Sotoodehnia N, et al. beta1- and beta2-adrenergic receptor gene variation, beta-blocker use and risk of myocardial infarction and stroke[J]. Am J Hypertens, 2008,21(3):290-296. [38] Hindorff LA, Heckbert SR, Psaty BM, et al. beta(2)-Adrenergic receptor polymorphisms and determinants of cardiovascular risk: the Cardiovascular Health Study[J]. Am J Hypertens, 2005,18(3):392-397. [39] Filigheddu F, Argiolas G, Bulla E, et al. Clinical variables, not RAAS polymorphisms, predict blood pressure response to ACE inhibitors in Sardinians[J]. Pharmacogenomics, 2008,9(10):1419-1427. [40] Gluszek J, Jankowska K. Is there relationship between the A1166C polymorphism of the angiotensin II receptor AT1 and plasma renin activity, insulin resistance and reduction of blood pressure after angiotensin-converting enzyme inhibitor therapy[J]. Pol Arch Med Wewn, 2008,118(4):194-200. [41] Kurland L, Hallberg P, Melhus H, et al. The relationship between the plasma concentration of irbesartan and the antihypertensive response is disclosed by an angiotensin II type 1 receptor polymorphism: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs. Atenolol (SILVHIA) Trial[J]. Am J Hypertens, 2008,21(7):836-839. [42] Bremer T, Man A, Kask K, et al. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension[J]. Pharmacogenomics, 2006,7(3):271-279. [43] Langaee TY, Gong Y, Yarandi HN, et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil[J]. Clin Pharmacol Ther, 2007,81(3):386-391. [44] Beitelshees AL, Gong Y, Wang D, et al. KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST)[J]. Pharmacogenet Genomics, 2007,17(9):719-729. [45] Kelley-Hedgepeth A, Peter I, Kip K, et al. The protective effect of KCNMB1 E65K against hypertension is restricted to blood pressure treatment with beta-blockade[J]. J Hum Hypertens, 2008,22(7):512-515. [46] Milionis HJ, Kostapanos MS, Vakalis K, et al. Impact of renin-angiotensin-aldosterone system genes on the treatment response of patients with hypertension and metabolic syndrome[J]. J Renin Angiotensin Aldosterone Syst, 2007,8(4):181-189. [47] Frazier L, Turner ST, Schwartz GL, et al. Multilocus effects of the renin-angiotensin-aldosterone system genes on blood pressure response to a thiazide diuretic[J]. Pharmacogenomics J, 2004,4(1):17-23. [48] Schelleman H, Klungel OH, Witteman JC, et al. Angiotensinogen M235T polymorphism and the risk of myocardial infarction and stroke among hypertensive patients on ACE-inhibitors or beta-blockers[J]. Eur J Hum Genet, 2007,15(4):478-484. [49] Dudley C, Keavney B, Casadei B, et al. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes[J]. J Hypertens, 1996,14(2):259-262. [50] Lynch AI, Boerwinkle E, Davis BR, et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension[J]. JAMA, 2008,299(3):296-307. [51] Pacanowski MA, Gong Y, Cooper-Dehoff RM, et al. beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension[J]. Clin Pharmacol Ther, 2008,84(6):715-721. [52] Karlsson J, Lind L, Hallberg P, et al. Beta1-adrenergic receptor gene polymorphisms and response to beta1-adrenergic receptor blockade in patients with essential hypertension[J]. Clin Cardiol, 2004,27(6):347-350. [53] Dishy V, Sofowora GG, Xie HG, et al. The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization[J]. N Engl J Med, 2001,345(14):1030-1035. [54] Schelleman H, Klungel OH, Witteman JC, et al. Interaction between polymorphisms in the renin-angiotensin-system and angiotensin-converting enzyme inhibitor or beta-blocker use and the risk of myocardial infarction and stroke[J]. Pharmacogenomics J, 2008,8(6):400-407. [55] Arnett DK, Davis BR, Ford CE, et al. Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study[J]. Circulation, 2005,111(25):3374-3383. [56] Yuan H, Huang Z, Yang G, et al. Effects of polymorphism of the beta(1) adrenoreceptor and CYP2D6 on the therapeutic effects of metoprolol[J]. J Int Med Res, 2008,36(6):1354-1362. [57] Chen G, Jiang S, Mao G, et al. CYP2C9 Ile359Leu polymorphism, plasma irbesartan concentration and acute blood pressure reductions in response to irbesartan treatment in Chinese hypertensive patients[J]. Methods Find Exp Clin Pharmacol, 2006,28(1):19-24. [58] 刘昭前,周宏灏. 个体化药物治疗的新时代[J]. 中国临床药理学与治疗学, 2007,12(1):1-6. |
[1] | WU Yujie, ZHAO Chengcheng, XI Qing. Evaluation of tegacycline regimens in treatment of gram-negative bacterial infections with Monte Carlo simulation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(9): 1027-1033. |
[2] | LI Kun, LI Lulu, LI Nannan, HU Weihong, ZHOU Jianchao. Effects of glycaemic control and CYP3A5 polymorphisms on tacrolimus trough concentrations after adult kidney transplantation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 767-774. |
[3] | HE Xueru, LI Ying, MA Yinling, FU Yuhao, XUN Xuejiao, DONG Zhanjun. Pharmacokinetic interaction study between sorafenib and dapagliflozin in rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 498-507. |
[4] | HUANG Zhiwei, LI Yi, XU Xiaoyong, ZHANG Lei, SHEN Yifeng, LI Huafang. Comparison of calculation results of five population pharmacokinetic analysis tools [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 525-535. |
[5] | NING Sisi, ZHAO Yuhong, YAN Lei, TANG Minna, ZHANG Ningzhi, ZHANG Yongqiao, CUI Zhaoqiang. Controversies over the targets of controlling blood pressure in hyper- tensive patients with chronic kidney disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 463-467. |
[6] | LI Mengxue, HE Jie, YU Xiaxia, HU Linlin, SHAO Hua. Research progress in population pharmacokinetics of rituximab [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 468-474. |
[7] | YAN Qiangyong, XIANG Daxiong, ZHU Ronghua, YANG Lingfeng, YANG Xiding, LI Jingjing, FAN Xiao, LIU Sai, XIONG Shoujun, FANG Pingfei. Bioequivalence study of cinacalcet hydrochloride tablets in healthy Chinese volunteers [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 171-177. |
[8] | LIU Lu, SHI Yufei, HE Qingfeng, XU Fengyan, WANG Kun, CAI Weimin, XIANG Xiaoqiang. Application of population modeling analysis to evaluate the impact of gene polymorphism on drug PK/PD [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1275-1282. |
[9] | ZHOU Jiating, ZHANG Xuan, XIE Zilan, LI Zhi. Interactions and clinical significance of gut microbiota and levothyroxine [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1307-1314. |
[10] | LI Xuejing, JIANG Jinping, LI Sining, WAN Linfei, ZHOU Xiangxiang, YANG Lian, LAN Ke. A bioequivalence study of generic and brand clozapine in schizophrenic patients [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1121-1130. |
[11] | WU Lili, LIANG Zhi, HUANG Siyong, WANG Yan. Effect of augmented renal clearance (ARC) on the pharmacokinetics, efficacy, and safety of vancomycin in patients with infective endocarditis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1139-1145. |
[12] | SHEN Chang, AI Kelong, HU Changping. Research progress in the regulation of hypoxic pulmonary hypertension by hypoxia-inducible factor-1 signaling pathway [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(1): 114-120. |
[13] | FU Hong, TIAN Lei. Individualized precision therapy for patients with ischemic stroke and hypertension [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 870-876. |
[14] | MA Shen, LIU Yushuo, TANG Hui, CHEN Wenbin, GAO Ling. Pharmacokinetics and clinical significance of drugs for improving nonalcoholic fatty liver disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 908-918. |
[15] | CHEN Wengang, YIN Qin, ZHANG Weiwei, ZHOU Lulu, KOU Wanqing, YUAN Xiaolong. Distributions of MTHFR gene polymorphism and its correlation with blood Hcy in patients with hypertension in southern Anhui province [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 768-774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||