[1] Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression[J]. Neurosci Biohehav Rev, 2005, 29(4/5): 627-647. [2] Stevenson RJ. An Initial evaluation of the functions of human olfaction[J]. Chem Senses, 2010, 35(1): 3-20. [3] Whitman MV, Greer CA. Adult neurogenesis and the olfactory system[J]. Prog Neurobiol, 2009, 89(2): 162-175. [4] Yusuke Tsuno, Kashiwadani H, Mori K. Behavioral state regulation of dendrodendritic synaptic inhibition in the olfactory bulb[J]. J Neurosci, 2008, 28(37): 9227-9238. [5] Yamada K, Hasegawa M, Kametani S, et al. Nose-to-brain delivery of TS-002, prostaglandin D2 analogue[J]. J Drug Target, 2007, 15(1): 59-66. [6] Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update[J]. Pharmacol Ther, 1997, 74(3): 299-316. [7] Wrynn AS, Mac Sweeney CP, Franconi F, et al. An in vivo magnetic resonance imaging study of the olfactory bulbectomized rat model of depression[J]. Brain Res, 2000, 879(1/2): 193-199. [8] Shieh KR. Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK, in the rat brain[J]. Neuroscience, 2003, 118(3): 831-843. [9] Hardy AB, Aïoun J, Baly C, et al. Orexin A modulates mitral cell activity in the rat olfactory bulb: patch-clamp study on slices and immunocytochemical localization of orexin receptors[J]. Endocrinol, 2005, 146(9): 4042-4053. [10] Blakemore LJ, Levenson CW, Trombley PQ. Neuropeptide modulates excitatory synaptic transmission in the olfactory bulb[J]. Neuroscience, 2006, 138(2):663-674. [11] Castro JB, Urban NN. Subthreshold glutamate release from mitral cell dendrites[J]. J Neurosci, 2009, 29(21): 7023-7030. [12] Granados-Fuentes D, Saxena MT, Prolo LM, et al. Olfactory bulb neurons express functional, entrainable circadian rhythms[J]. Eur J Neurosci, 2004, 19(4): 898-906. [13] Granados-Fuentes D, Prolo LM, Abraham U, et al. The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb[J]. J Neurosci, 2004, 24(3): 615-619. [14] Abraham U, Prior JL, Granados-Fuentes D, et al. Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro[J]. J Neurosci, 2005, 25(38): 8620-8626. [15] Aston-Jones G, Chen S, Zhu Y, et al. A neural circuit for circadian regulation of arousal[J]. Nat. Neurosci, 2001, 4(7): 732-738. [16] Bernabeu R, Thiriet N, Zwiller J, et al. Lesion of the lateral entorhinal cortex amplifies odor-induced expression of c-fos, junB, and zif 268 mRNA in rat brain[J]. Synapse, 2006, 59(3): 135-143. [17] Funk D, Amir S. Circadian modulation of fos responses to odor of the red fox, a rodent predator, in the rat olfactory system[J]. Brain Res, 2000, 866(1/2): 262-267. [18] Granados-Fuentes D, Tseng A, Herzoq ED. A circadian clock in the olfactory bulb controls olfactory responsivity[J]. J Neurosci, 2006, 26(47): 12219-12225. [19] Le Magnen J. Increased food intake induced in rats by changes in the satiating sensory input from food [J]. Appetite, 1999, 33(1): 33-35. [20] Abe M, Herzog ED, Yamazaki S, et al. Circadian rhythms in isolated brain regions[J]. J Neurosci, 2002, 22(1): 350-356. [21] Hawkes CH, Del Tredici K, Braak H. Parkinson's disease: the dual hit theory revisited[J]. Ann N Y Acad Sci, 2009, 1170: 615-622. |