Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2014, Vol. 19 ›› Issue (1): 74-81.
Previous Articles Next Articles
WANG Jiang-lin1,2, ZUO Xiao-cong1,2, YANG Meng1,2, ZHOU Ling-yun1,2
Received:
2013-03-21
Revised:
2014-01-07
Online:
2014-01-27
Published:
2014-02-12
CLC Number:
WANG Jiang-lin, ZUO Xiao-cong, YANG Meng, ZHOU Ling-yun. Advances in the study of post-transplantation diabetes mellitus resulting from tacrolimus via calcineurin/NFAT signaling[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(1): 74-81.
[1] Gomes MB, Cobas RA. Post-transplant diabetes mellitus[J]. Diabetol Metab Syndr, 2009, 1(1): 14. [2] 余爱荣, 范星, 刘慧明, 等. 中国肾移植患者钙蛋白酶10基因多态性与移植后糖尿病的相关性研究[J]. 中国临床药理学与治疗学, 2012, 17(8): 901-906. [3] Fernandez-Fresnedo G, Escallada R, de Francisco AL, et al. Posttransplant diabetes is a cardiovascular risk factor in renal transplant patients[J].Transplant Proc, 2003, 35(2): 700. [4] Shivaswamy V, McClure M, Passer J, et al. Hyperglycemia induced by tacrolimus and sirolimus is reversible in normal sprague-dawley rats[J]. Endocrine, 2010, 37(3): 489-496. [5] Al-Ghareeb SM, El-Agroudy AE, Al AS, et al. Risk factors and outcomes of new-onset diabetes after transplant: single-centre experience[J]. Exp Clin Transplant, 2012, 10(5): 458-465. [6] Gnatta D, Keitel E, Heineck I, et al. Use of tacrolimus and the development of posttransplant diabetes mellitus: a Brazilian single-center, observational study[J]. Transplant Proc, 2010, 42(2): 475-478. [7] Borda B, Lengyel C, Szederkenyi E, et al. Post-transplant diabetes mellitus-risk factors and effects on the function and morphology of the allograft[J]. Acta Physiol Hung, 2012, 99(2): 206-215. [8] Rusnak F, Mertz P. Calcineurin: form and function[J]. Physiol Rev, 2000, 80(4): 1483-1521. [9] Ke H, Huai Q. Structures of calcineurin and its complexes with immunophilins-immunosuppressants [J]. Biochem Biophys Res Commun, 2003, 311(4): 1095-1102. [10] Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes[J]. Physiol Rev, 2000, 80(1): 173-210. [11] Li HC. Activation of brain calcineurin phosphatase towards nonprotein phosphoesters by Ca2+, calmodulin, and Mg2+[J]. J Biol Chem, 1984, 259(14): 8801-8807. [12] Heit JJ, Apelqvist AA, Gu X, et al. Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function[J]. Nature, 2006, 443(7109): 345-349. [13] Park S, Uesugi M, Verdine GL. A second calcineurin binding site on the NFAT regulatory domain[J]. Proc Natl Acad Sci USA, 2000, 97(13): 7130-7135. [14] Ruff VA, Leach KL. Direct demonstration of NFATp dephosphorylation and nuclear localization in activated HT-2 cells using a specific NFATp polyclonal antibody[J]. J Biol Chem, 1995, 270(38): 22602- 22607. [15] Marchetti P, Bugliani M, Boggi U, et al. The pancreatic beta cells in human type 2 diabetes[J]. Adv Exp Med Biol, 2012, 771: 288-309. [16] Cerf ME. Beta cell dysfunction and insulin resistance[J]. Front Endocrinol (Lausanne), 2013, 4: 37. [17] Zelle DM, Corpeleijn E, Deinum J, et al. Pancreatic beta-cell dysfunction and risk of new-onset diabetes after kidney transplantation[J]. Diabetes Care, 2013, 36(7): 1926-1932. [18] Heit JJ. Calcineurin/NFAT signaling in the beta-cell: from diabetes to new therapeutics[J]. Bioessays, 2007, 29(10): 1011-1021. [19] Chin ER, Olson EN, Richardson JA, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type[J]. Genes Dev, 1998, 12(16): 2499-2509. [20] Martins KJ, St-Louis M, Murdoch GK, et al. Nitric oxide synthase inhibition prevents activity-induced calcineurin-NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions[J]. J Physiol, 2012, 590(Pt 6): 1427-1442. [21] Heit JJ, Karnik SK, Kim SK. Intrinsic regulators of pancreatic beta-cell proliferation[J]. Annu Rev Cell Dev Biol, 2006, 22: 311-338. [22] Rane SG, Dubus P, Mettus RV, et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia[J]. Nat Genet, 1999, 22(1): 44-52. [23] Song WJ, Schreiber WE, Zhong E, et al. Exendin-4 stimulation of cyclin A2 in beta-cell proliferation [J]. Diabetes, 2008, 57(9): 2371-2381. [24] Wakae-Takada N, Xuan S, Watanabe K, et al. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin[J]. Diabetologia, 2013, 56(4): 856-866. [25] Chen S, Shimoda M, Chen J, et al. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration[J]. Cell Cycle, 2012, 11(4): 695-705. [26] Cui W, De Jesus K, Zhao H, et al. Overexpression of Reg3alpha increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells[J]. Growth Factors, 2009, 27(3): 195-202. [27] Davis DB, Lavine JA, Suhonen JI, et al. FoxM1 is up-regulated by obesity and stimulates beta-cell proliferation[J]. Mol Endocrinol, 2010, 24(9): 1822-1834. [28] Goodyer WR, Gu X, Liu Y, et al. Neonatal beta cell development in mice and humans is regulated by calcineurin/NFAT[J]. Dev Cell, 2012, 23(1): 21-34. [29] Soleimanpour SA, Crutchlow MF, Ferrari AM, et al. Calcineurin signaling regulates human islet {beta}-cell survival[J]. J Biol Chem, 2010, 285(51): 40050-40059. [30] Rostambeigi N, Lanza IR, Dzeja PP, et al. Unique cellular and mitochondrial defects mediate FK506-induced islet beta-cell dysfunction[J]. Transplantation, 2011, 91(6): 615-623. [31] Li QY, Li F, Sun JH, et al. Mechanisms of diabetes mellitus induced with FK506 in SD rats models[J]. Immunopharmacol Immunotoxicol, 2009, 31(4): 675-681. [32] Bugliani M, Masini M, Liechti R, et al. The direct effects of tacrolimus and cyclosporin A on isolated human islets: A functional, survival and gene expression study[J]. Islets, 2009, 1(2): 106-110. [33] Briaud I, Dickson LM, Lingohr MK, et al. Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells[J]. J Biol Chem, 2005, 280(3): 2282-2293. [34] Kubota N, Tobe K, Terauchi Y, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia[J]. Diabetes, 2000, 49(11): 1880-1889. [35] Demozay D, Tsunekawa S, Briaud I, et al. Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet beta-cells[J]. Diabetes, 2011, 60(11): 2892-2902. [36] Johnson JD, Ao Z, Ao P, et al. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets[J]. Cell Transplant, 2009, 18(8): 833-845. [37] Redmon JB, Olson LK, Armstrong MB, et al. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells[J]. J Clin Invest, 1996, 98(12): 2786-2793. [38] Takemitsu H, Yamamoto I, Lee P, et al. cDNA cloning and mRNA expression of canine pancreatic and duodenum homeobox 1 (Pdx-1)[J]. Res Vet Sci, 2012, 93(2): 770-775. [39] Aguayo-Mazzucato C, Zavacki AM, Marinelarena A, et al. Thyroid hormone promotes postnatal rat pancreatic beta-cell development and glucose-responsive insulin secretion through MAFA[J]. Diabetes, 2013, 62(5): 1569-1580. [40] Kim JW, You YH, Jung S, et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models[J]. Diabetologia, 2013, 56(4): 847-855. [41] Radu RG, Fujimoto S, Mukai E, et al. Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity[J]. Am J Physiol Endocrinol Metab, 2005, 288(2): E365-E371. [42] Rauch MC, San MA, Ojeda D, et al. Tacrolimus causes a blockage of protein secretion which reinforces its immunosuppressive activity and also explains some of its toxic side-effects[J]. Transpl Immunol, 2009, 22(1/2): 72-81. [43] Ozbay LA, Smidt K, Mortensen DM, et al. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E beta-cells[J]. Br J Pharmacol, 2011, 162(1): 136-146. [44] Malinowski M, Pratschke J, Lock J, et al. Effect of tacrolimus dosing on glucose metabolism in an experimental rat model[J]. Ann Transplant, 2010, 15(3): 60-65. [45] Duijnhoven EM, Boots JM, Christiaans MH, et al. Influence of tacrolimus on glucose metabolism before and after renal transplantation: a prospective study[J]. J Am Soc Nephrol, 2001, 12(3): 583-588. [46] Tsuchiya T, Ishida K, Ito S, et al. Effect of conversion from twice-daily to once-daily tacrolimus on glucose intolerance in stable kidney transplant recipients[J]. Transplant Proc, 2012, 44(1): 118-120. [47] Larsen JL, Bennett RG, Burkman T, et al. Tacrolimus and sirolimus cause insulin resistance in normal sprague dawley rats[J]. Transplantation, 2006, 82(4): 466-470. [48] Chakkera HA, Mandarino LJ. Calcineurin inhibition and new-onset diabetes mellitus after transplantation[J]. Transplantation, 2013, 95(5): 647-652. [49] Ozbay LA, Moller N, Juhl C, et al. The impact of calcineurin inhibitors on insulin sensitivity and insulin secretion: a randomized crossover trial in uraemic patients[J]. Diabet Med, 2012, 29(12): e440-e444. [50] Wyzgal J, Paczek L, Sanko-Resmer J, et al. Insulin resistance in kidney allograft recipients treated with calcineurin inhibitors[J]. Ann Transplant, 2007, 12(2): 26-29. [51] Mallinson J, Meissner J, Chang KC. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type[J]. Int Rev Cell Mol Biol, 2009, 277: 67-101. [52] Calabria E, Ciciliot S, Moretti I, et al. NFAT isoforms control activity-dependent muscle fiber type specification[J]. Proc Natl Acad Sci USA, 2009, 106(32): 13335-13340. [53] McCullagh KJ, Calabria E, Pallafacchina G, et al. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching[J]. Proc Natl Acad Sci USA, 2004, 101(29): 10590- 10595. [54] Meissner JD, Umeda PK, Chang KC, et al. Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway[J]. J Cell Physiol, 2007, 211(1): 138-148. [55] Kubis HP, Hanke N, Scheibe RJ, et al. Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture[J]. Am J Physiol Cell Physiol, 2003, 285(1): C56-C63. [56] Miyazaki M, Hitomi Y, Kizaki T, et al. Calcineurin-mediated slow-type fiber expression and growth in reloading condition[J]. Med Sci Sports Exerc, 2006, 38(6): 1065-1072. [57] Escribano O, Guillen C, Nevado C, et al. Beta-cell hyperplasia induced by hepatic insulin resistance: role of a liver-pancreas endocrine axis through insulin receptor A isoform[J]. Diabetes, 2009, 58(4): 820-828. |
[1] | MA Yan, TIAN Gaopeng, SHI Xingwen, SUN Ting, XIE Jingjing, ZHEN Donghu. Correlation between 25(OH)D and metabolically related fatty liver in T2DM population [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(9): 1018-1026. |
[2] | MA Xiankang, YANG Lixia, CUI Yangyang, MI Denghai. Angelica polysaccharides improve hepatic endoplasmic reticulum stress by inhibiting the expression of GRP78, p-PERK and p-Eif2α in diabetic KK-Ay mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 926-936. |
[3] | LI Kun, LI Lulu, LI Nannan, HU Weihong, ZHOU Jianchao. Effects of glycaemic control and CYP3A5 polymorphisms on tacrolimus trough concentrations after adult kidney transplantation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 767-774. |
[4] | HOU Ruiying, GUO Lige, JIAO Weijie, DU Lei, WU Guiyue, ZHAO Xu. Effects of Xiaokeshu recipe on levels of serum inflammatory factors in type2 diabetic rats and its mechanism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 377-382. |
[5] | ZHANG Xuejiao, LIU Jieting, LI Luxin, CHEN Peijian, DING Minglu, SUN Mengwei, CHU Yanhui, ZHANG Zhen . Effects and mechanism of dapagliflozin on myocardial injury in type 1 diabetes mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(3): 257-265. |
[6] | ZHAO Shifeng, SONG Xiangming, YAO Jianping. Tirzepatide: A new glucagon-like peptide-1 receptor/glucose-dependent insulinotropic peptide receptor dual agonist [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 220-227. |
[7] | DU Xiaoyu, LI Yumeng, WU Huizhen, QIU Bo. Pharmacological and clinical evaluation of Dorzagliatin in the treatment of type 2 diabetes [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1177-1183. |
[8] | CAI Jing, PAN Binjing, LIU Jingfang. Research progress on the relationship between hypoglycemic drugs and sarcopenia [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(1): 101-108. |
[9] | WANG Shuang, LIU jia, ZHANG Yueli. Associations of POR*28 polymorphisms with tacrolimus stable dose in Chinese kidney transplantation patients [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 991-997. |
[10] | ZHAI Weiwei, YU Qiaoling, LIU Ping, QIU Bo, WU Huizhen. Research progress of finerenone in the treatment of type 2 diabetes mellitus complicated with chronic kidney disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1067-1074. |
[11] | LU Senlin, LIU Xinyuan, WANG Jili, HUANG Xiaofei. Research progress of virus-mediated gene therapy in type 2 diabetes mellitu [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 800-807. |
[12] | DU Wenpeng, AO Jiangen, TAO Yi, WU Guansheng, HE Jiake. Study on the factors affecting the steady-state blood concentration of tacrolimus in patients with autoimmune diseases [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 645-651. |
[13] | ZENG Xiaofan, XU Yiqi, LIU Shu, WU Qian, LI Zibao, HE Junjun, JIN Yuelong, ZHAO Yongli, HE Chunling, GAO Jialin. Retrospectively analysis of the effect of low-dose aspirin on primary prevention of non-fatal myocardial infarction and cerebral infarction in patients with type 2 diabetes mellitus [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 665-671. |
[14] | LI Hao, LI Ling, XIA Zhiping, YE Qifa, PENG Guizhu. FXR agonist GW4064 ameliorates tacrolimus-induced abnormalities in glucose metabolism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(4): 466-472. |
[15] | SHAO Xi, YU Yanan, HUANG Yuhan, WANG Xiaotong, LING Hongwei, LV Dongmei, WANG Tao. Predictive factors associated with weight response to exenatide in patients with type 2 diabetes mellitus [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(3): 287-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||