Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2026, Vol. 31 ›› Issue (1): 133-144.doi: 10.12092/j.issn.1009-2501.2026.01.015
Shifeng ZHAO(
), Hengbin CAO, Ronghua WANG, Yumei YUAN(
)
Received:2025-03-03
Revised:2025-05-07
Online:2026-01-26
Published:2026-02-13
Contact:
Yumei YUAN
E-mail:thecloudknows@yeah.net;yuanymei82@163.com
CLC Number:
Shifeng ZHAO, Hengbin CAO, Ronghua WANG, Yumei YUAN. Cefiderocol: a novel siderophore cephalosporin[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 133-144.
| Organisms | MIC breakpoint (μg/mL) | |||||||||
| CLSI | FDA | EUCAST | ||||||||
| S | I | R | S | I | R | S | R | |||
| Enterobacterales* | ≤4 | 8 | ≥16 | ≤4 | 8 | ≥16 | ≤2 | >2 | ||
| Pseudomonas aeruginosa | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | ≤2 | >2 | ||
| Acinetobacter baumannii | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | IE | IE | ||
| Stenotrophomonas maltophilia | ≤1 | - | - | - | - | - | IE | IE | ||
Table 1 Breakpoints of cefiderocol approved by CLSI, FDA and EUCAST
| Organisms | MIC breakpoint (μg/mL) | |||||||||
| CLSI | FDA | EUCAST | ||||||||
| S | I | R | S | I | R | S | R | |||
| Enterobacterales* | ≤4 | 8 | ≥16 | ≤4 | 8 | ≥16 | ≤2 | >2 | ||
| Pseudomonas aeruginosa | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | ≤2 | >2 | ||
| Acinetobacter baumannii | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | IE | IE | ||
| Stenotrophomonas maltophilia | ≤1 | - | - | - | - | - | IE | IE | ||
| Organism (no. of isolates) | Antimicrobial agents | MIC (μg/mL) | CLSI MIC interpretation* | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 99.8 | 0.2 | 0.1 | |
| Cefepime | ≤0.12 | 16 | ≤0.06 to >64 | 85.9 | 3.0 | 11.2 | ||
| Ceftazidime-avibactam | 0.12 | 0.5 | ≤0.03 to >64 | 99.2 | NA | 0.8 | ||
| Ceftolozane-tazobactam | 0.25 | 2 | ≤0.06 to >64 | 91.7 | 1.8 | 6.6 | ||
| Ciprofloxacin | ≤0.12 | >8 | ≤0.06 to >8 | 74.5 | 3.2 | 22.3 | ||
| Meropenem | ≤0.06 | 0.12 | ≤0.06 to >64 | 96.8 | 0.4 | 2.9 | ||
| P. aeruginosa ( | Cefiderocol | 0.12 | 0.5 | ≤0.002 to 8 | 99.9 | 0.1 | 0 | |
| Cefepime | 4 | 16 | ≤0.06 to >64 | 82.9 | 9.1 | 8.0 | ||
| Ceftazidime-avibactam | 2 | 8 | ≤0.03 to >64 | 93.8 | NA | 6.2 | ||
| Ceftolozane-tazobactam | 0.5 | 2 | ≤0.06 to >64 | 94.0 | 1.0 | 5.0 | ||
| Ciprofloxacin | 0.25 | >8 | ≤0.06 to >8 | 70.8 | 6.5 | 22.7 | ||
| Meropenem | 0.5 | 16 | ≤0.06 to >64 | 77.2 | 5.8 | 17.0 | ||
| A. baumannii complex ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 96.0 | 1.3 | 2.7 | |
| Cefepime | 8 | >64 | ≤0.06 to >64 | 52.0 | 9.5 | 38.5 | ||
| Ceftazidime-avibactam | 16 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ceftolozane-tazobactam | 8 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ciprofloxacin | >8 | >8 | ≤0.12 to >8 | 40.0 | 0.7 | 59.3 | ||
| Meropenem | 16 | >64 | ≤0.06 to >64 | 46.2 | 1.3 | 52.5 | ||
Table 2 Cumulative antimicrobial susceptibility testing results from SIDERO-WT surveillance study (North America and Europe, 2014 to 2019)
| Organism (no. of isolates) | Antimicrobial agents | MIC (μg/mL) | CLSI MIC interpretation* | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 99.8 | 0.2 | 0.1 | |
| Cefepime | ≤0.12 | 16 | ≤0.06 to >64 | 85.9 | 3.0 | 11.2 | ||
| Ceftazidime-avibactam | 0.12 | 0.5 | ≤0.03 to >64 | 99.2 | NA | 0.8 | ||
| Ceftolozane-tazobactam | 0.25 | 2 | ≤0.06 to >64 | 91.7 | 1.8 | 6.6 | ||
| Ciprofloxacin | ≤0.12 | >8 | ≤0.06 to >8 | 74.5 | 3.2 | 22.3 | ||
| Meropenem | ≤0.06 | 0.12 | ≤0.06 to >64 | 96.8 | 0.4 | 2.9 | ||
| P. aeruginosa ( | Cefiderocol | 0.12 | 0.5 | ≤0.002 to 8 | 99.9 | 0.1 | 0 | |
| Cefepime | 4 | 16 | ≤0.06 to >64 | 82.9 | 9.1 | 8.0 | ||
| Ceftazidime-avibactam | 2 | 8 | ≤0.03 to >64 | 93.8 | NA | 6.2 | ||
| Ceftolozane-tazobactam | 0.5 | 2 | ≤0.06 to >64 | 94.0 | 1.0 | 5.0 | ||
| Ciprofloxacin | 0.25 | >8 | ≤0.06 to >8 | 70.8 | 6.5 | 22.7 | ||
| Meropenem | 0.5 | 16 | ≤0.06 to >64 | 77.2 | 5.8 | 17.0 | ||
| A. baumannii complex ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 96.0 | 1.3 | 2.7 | |
| Cefepime | 8 | >64 | ≤0.06 to >64 | 52.0 | 9.5 | 38.5 | ||
| Ceftazidime-avibactam | 16 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ceftolozane-tazobactam | 8 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ciprofloxacin | >8 | >8 | ≤0.12 to >8 | 40.0 | 0.7 | 59.3 | ||
| Meropenem | 16 | >64 | ≤0.06 to >64 | 46.2 | 1.3 | 52.5 | ||
| Organism | Genotype (no. of isolates) | MIC (μg/mL) | CLSI MIC interpretation | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales | MBL (211)a | 2 | 4 | 0.06 to 128 | 91.5 | 5.7 | 2.8 | |
| VIM (113)a | 1 | 4 | 0.12 to 16 | 96.5 | 1.8 | 1.8 | ||
| NDM (96)a | 2 | 8 | 0.12 to 128 | 85.4 | 10.4 | 4.2 | ||
| KPC (382)b | 1 | 4 | 0.015 to 8 | 98.4 | 1.6 | 0 | ||
| OXA-48 group (256)c | 0.5 | 4 | 0.015 to 16 | 97.3 | 2.3 | 0.4 | ||
| Carbapenemase negative (154)d | 0.5 | 2 | 0.008 to 8 | 98.7 | 1.3 | 0 | ||
| P. aeruginosa | MBL (227)a | 0.25 | 2 | 0.008 to 4 | 100 | 0 | 0 | |
| VIM (200)a | 0.25 | 1 | 0.008 to 4 | 100 | 0 | 0 | ||
| IMP (25)a | 2 | 4 | 0.12 to 4 | 100 | 0 | 0 | ||
| GES (carbapenemase) (34)e | 0.25 | 1 | 0.06 to 1 | 100 | 0 | 0 | ||
| Carbapenemase negative ( | 0.25 | 1 | ≤0.002 to 8 | 99.8 | 0.2 | 0 | ||
| A. baumannii complex | MBL (25)a | 4 | 8 | 0.12 to >64 | 60.0 | 32.0 | 8.0 | |
| OXA-23 group ( | 0.25 | 2 | ≤0.002 to >256 | 95.6 | 1.9 | 2.6 | ||
| OXA-24 group (570)f | 0.5 | 8 | 0.004 to >256 | 89.5 | 1.9 | 8.6 | ||
| OXA-58 group (69)f | 1 | 1 | 0.06 to 4 | 100 | 0 | 0 | ||
| OXA-23and24 group (19)f | 0.5 | 2 | 0.06 to 2 | 100 | 0 | 0 | ||
| OXA-23and58 group (34)f | 0.25 | 0.5 | 0.06 to 0.5 | 100 | 0 | 0 | ||
| PER/VEB (103)g | 128 | >256 | 0.12 to >256 | 15.5 | 10.7 | 73.8 | ||
| Carbapenemase negative (309)d | 0.25 | 2 | 0.008 to >256 | 95.5 | 2.6 | 1.9 | ||
Table 3 Cumulative cefiderocol susceptibility testing results from SIDERO-WT surveillance study for molecularly characterized meropenem-nonsusceptible isolates (North America and Europe, 2014 to 2019)
| Organism | Genotype (no. of isolates) | MIC (μg/mL) | CLSI MIC interpretation | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales | MBL (211)a | 2 | 4 | 0.06 to 128 | 91.5 | 5.7 | 2.8 | |
| VIM (113)a | 1 | 4 | 0.12 to 16 | 96.5 | 1.8 | 1.8 | ||
| NDM (96)a | 2 | 8 | 0.12 to 128 | 85.4 | 10.4 | 4.2 | ||
| KPC (382)b | 1 | 4 | 0.015 to 8 | 98.4 | 1.6 | 0 | ||
| OXA-48 group (256)c | 0.5 | 4 | 0.015 to 16 | 97.3 | 2.3 | 0.4 | ||
| Carbapenemase negative (154)d | 0.5 | 2 | 0.008 to 8 | 98.7 | 1.3 | 0 | ||
| P. aeruginosa | MBL (227)a | 0.25 | 2 | 0.008 to 4 | 100 | 0 | 0 | |
| VIM (200)a | 0.25 | 1 | 0.008 to 4 | 100 | 0 | 0 | ||
| IMP (25)a | 2 | 4 | 0.12 to 4 | 100 | 0 | 0 | ||
| GES (carbapenemase) (34)e | 0.25 | 1 | 0.06 to 1 | 100 | 0 | 0 | ||
| Carbapenemase negative ( | 0.25 | 1 | ≤0.002 to 8 | 99.8 | 0.2 | 0 | ||
| A. baumannii complex | MBL (25)a | 4 | 8 | 0.12 to >64 | 60.0 | 32.0 | 8.0 | |
| OXA-23 group ( | 0.25 | 2 | ≤0.002 to >256 | 95.6 | 1.9 | 2.6 | ||
| OXA-24 group (570)f | 0.5 | 8 | 0.004 to >256 | 89.5 | 1.9 | 8.6 | ||
| OXA-58 group (69)f | 1 | 1 | 0.06 to 4 | 100 | 0 | 0 | ||
| OXA-23and24 group (19)f | 0.5 | 2 | 0.06 to 2 | 100 | 0 | 0 | ||
| OXA-23and58 group (34)f | 0.25 | 0.5 | 0.06 to 0.5 | 100 | 0 | 0 | ||
| PER/VEB (103)g | 128 | >256 | 0.12 to >256 | 15.5 | 10.7 | 73.8 | ||
| Carbapenemase negative (309)d | 0.25 | 2 | 0.008 to >256 | 95.5 | 2.6 | 1.9 | ||
| Trial | APEKS-cUTI (NCT02321800) | APEKS-NP (NCT03032380) | CREDIBLE-CR (NCT02714595) |
| Design | Phase 2, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, OL, P, PG, R, |
| Infections | cUTI, AUP, | NP (HAP/VAP/HCAP) | NP, cUTI, BSI/sepsis, |
| CR | NO | NO | YES |
| Treatment group | CFD 2 g q8 h vs. IMI/CIL 1 g/1 g q8 h | CFD 2 g q8 h vs. MER 2 g q8 h | CFD 2 g q8 h vs. BAT |
| Duration | 7-14 days | 7-14 days, or 21 days | 7-14 days, or 21 days for NP, BSI/sepsis,≥5 days for cUTI |
| Number of patients participating in efficacy analysis | 371 | 292 | 118 |
| Clinical outcome at TOC | 89.7% (226/252) vs. 87.4% (104/119) | 64.8% (94/145) vs. 66.7% (98/147) | NP: 50.0% (20/40) vs. 52.6% (10/19) cUTI: 70.6% (12/17) vs. 60.0% (3/5) BSI/sepsis: 43.5% (10/23) vs. 42.9% (6/14) OVERALL: 52.5% (42/80) vs. 50.0% (19/38) |
| Microbiological eradication at TOC | 73.0% (184/252) vs. 56.3% (67/119) | 40.7% (59/145) vs. 41.5% (61/147) | NP: 22.5% (9/40) vs. 21.1% (4/19) cUTI: 52.9% (9/17) vs. 20.0% (1/5) BSI/sepsis: 30.4% (7/23) vs. 28.6% (4/14) OVERALL: 31.3% (25/80) vs. 23.7% (9/38) |
| All-cause mortality at the end of the trial | — | 26.8% (38/142) vs. 23.3% (34/146) | NP: 42.2% (19/45) vs. 18.2% (4/22) cUTI: 15.4% (4/26) vs. 20.0% (2/10) BSI/sepsis: 36.7% (11/30) vs. 17.6% (3/17) OVERALL: 33.7% (34/101) vs. 18.4% (9/49) |
| Drug-related TEAEs | 9.0% (27/300) vs. 11.5% (17/148) | 9.5% (14/148) vs. 11.3% (17/150) | 14.9% (15/101) vs. 22.4% (11/49) |
Table 4 Summary of results of clinical trials of cefiderocol
| Trial | APEKS-cUTI (NCT02321800) | APEKS-NP (NCT03032380) | CREDIBLE-CR (NCT02714595) |
| Design | Phase 2, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, OL, P, PG, R, |
| Infections | cUTI, AUP, | NP (HAP/VAP/HCAP) | NP, cUTI, BSI/sepsis, |
| CR | NO | NO | YES |
| Treatment group | CFD 2 g q8 h vs. IMI/CIL 1 g/1 g q8 h | CFD 2 g q8 h vs. MER 2 g q8 h | CFD 2 g q8 h vs. BAT |
| Duration | 7-14 days | 7-14 days, or 21 days | 7-14 days, or 21 days for NP, BSI/sepsis,≥5 days for cUTI |
| Number of patients participating in efficacy analysis | 371 | 292 | 118 |
| Clinical outcome at TOC | 89.7% (226/252) vs. 87.4% (104/119) | 64.8% (94/145) vs. 66.7% (98/147) | NP: 50.0% (20/40) vs. 52.6% (10/19) cUTI: 70.6% (12/17) vs. 60.0% (3/5) BSI/sepsis: 43.5% (10/23) vs. 42.9% (6/14) OVERALL: 52.5% (42/80) vs. 50.0% (19/38) |
| Microbiological eradication at TOC | 73.0% (184/252) vs. 56.3% (67/119) | 40.7% (59/145) vs. 41.5% (61/147) | NP: 22.5% (9/40) vs. 21.1% (4/19) cUTI: 52.9% (9/17) vs. 20.0% (1/5) BSI/sepsis: 30.4% (7/23) vs. 28.6% (4/14) OVERALL: 31.3% (25/80) vs. 23.7% (9/38) |
| All-cause mortality at the end of the trial | — | 26.8% (38/142) vs. 23.3% (34/146) | NP: 42.2% (19/45) vs. 18.2% (4/22) cUTI: 15.4% (4/26) vs. 20.0% (2/10) BSI/sepsis: 36.7% (11/30) vs. 17.6% (3/17) OVERALL: 33.7% (34/101) vs. 18.4% (9/49) |
| Drug-related TEAEs | 9.0% (27/300) vs. 11.5% (17/148) | 9.5% (14/148) vs. 11.3% (17/150) | 14.9% (15/101) vs. 22.4% (11/49) |
| Mechanism | Enterobacterales | non-fermenting GNB | |||||
| E. coli | E. cloacae | K. pneumoniae | P. aeruginosa | A. baumannii | S. maltophilia | ||
| Mutations in genes of siderophore receptor | cirA, fiu, fecB, | cirA, fiu, | cirA, fiu, fhuA, fepA, | pirA, piuA, piuD, fecI, | pirA, piuA, | cirA, fciA, | |
| KPC variants | KPC-3,25,29,31, 33,39,41,44,50, | NA | KPC-2,31,33, 41,50,109,121, 203,216, | NA | NA | NA | |
| MBLs | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-5, VIM-1, | NDM-1,5, | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-1,5,9, | NA | |
| AmpC variants | AmpCEnt630 AmpCPDC-30 | AmpCEnt385,630 | AmpCDHA-1 | AmpCPDC-30,191 AmpCCMY-185,186 | NA | NA | |
| OXA-like | OXA-427 | OXA-427 | OXA-427 | OXA-427 | OXA-427 | NA | |
| ESBLs | PER-1,2,6,7, SHV-1, 2,2a,3,4,5,11,12, 26,28, | PER-1,2,6,7, | SHV-5,12, | PER-1,2,6,7, SHV-2a,12, GES-6, | PER-1,7, SHV-5, | NA | |
Table 5 The main β-lactamases and mutations in genes of siderophore receptor associated with cefiderocol resistance
| Mechanism | Enterobacterales | non-fermenting GNB | |||||
| E. coli | E. cloacae | K. pneumoniae | P. aeruginosa | A. baumannii | S. maltophilia | ||
| Mutations in genes of siderophore receptor | cirA, fiu, fecB, | cirA, fiu, | cirA, fiu, fhuA, fepA, | pirA, piuA, piuD, fecI, | pirA, piuA, | cirA, fciA, | |
| KPC variants | KPC-3,25,29,31, 33,39,41,44,50, | NA | KPC-2,31,33, 41,50,109,121, 203,216, | NA | NA | NA | |
| MBLs | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-5, VIM-1, | NDM-1,5, | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-1,5,9, | NA | |
| AmpC variants | AmpCEnt630 AmpCPDC-30 | AmpCEnt385,630 | AmpCDHA-1 | AmpCPDC-30,191 AmpCCMY-185,186 | NA | NA | |
| OXA-like | OXA-427 | OXA-427 | OXA-427 | OXA-427 | OXA-427 | NA | |
| ESBLs | PER-1,2,6,7, SHV-1, 2,2a,3,4,5,11,12, 26,28, | PER-1,2,6,7, | SHV-5,12, | PER-1,2,6,7, SHV-2a,12, GES-6, | PER-1,7, SHV-5, | NA | |
| 1 | World Health Organization. WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance [EB/OL]. (2024-05-17) [2024/11/11]. https://www.who.int/publications/i/item/9789240093461. |
| 2 | GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050[J]. Lancet, 2024, 404 (10459): 1199- 1226. |
| 3 | 姜道利, 丑晓华, 刘志东, 等. 头孢他啶阿维巴坦治疗多重耐药革兰阴性菌感染的真实世界研究[J]. 中国临床药理学与治疗学, 2023, 28 (9): 1008- 1017. |
| 4 |
查娴, 陈大宇, 邵华. 替加环素和多黏菌素B治疗重症患者耐碳青霉烯类肠杆菌科细菌肺炎的疗效和安全性分析[J]. 中国临床药理学与治疗学, 2024, 29 (2): 154- 163.
doi: 10.12092/j.issn.1009-2501.2024.02.005 |
| 5 | Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant gram-negative bacteria [J]. Front Cell Infect Microbiol, 2022, 15, 12: 823684. |
| 6 |
Tompkins K, van Duin D. Treatment for carbapenem-resistant enterobacterales infections: recent advances and future directions[J]. Eur J Clin Microbiol Infect Dis, 2021, 40 (10): 2053- 2068.
doi: 10.1007/s10096-021-04296-1 |
| 7 | Zeng M, Xia J, Zong Z, et al. Society of Bacterial Infection and Resistance of Chinese Medical Association; Expert Committee on Clinical Use of Antimicrobial Agents and Evaluation of Antimicrobial Resistance of the National Health Commission; Infectious Diseases Society of Chinese Medical Education Association. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli[J]. J Microbiol Immunol Infect, 2023, 56 (4): 653- 671. |
| 8 | Shionogi Inc. Cefiderocol FDA briefing document [EB/OL]. (2021-11-12) [2024/11/11]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/209445s004lbl.pdf. |
| 9 | European Medicine Company. Fetcroja [EB/OL]. (2020-04-29) [2024/11/11]. https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja#overview-section. |
| 10 | Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions[J]. Nat Rev Microbiol, 2020, 18 (3): 152- 163. |
| 11 | Bilitewski U, Blodgett JAV, Duhme-Klair AK, et al. Chemical and biological aspects of nutritional immunity-perspectives for new anti-infectives that target iron uptake systems[J]. Angew Chem Int Ed Engl, 2017, 56 (46): 14360- 14382. |
| 12 | Aoki T, Yoshizawa H, Yamawaki K, et al. Cefiderocol (S-649266), a new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: structure activity relationship[J]. Eur J Med Chem, 2018, 15 (155): 847- 868. |
| 13 | Zhanel GG, Golden AR, Zelenitsky S, et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli[J]. Drugs, 2019, 79 (3): 271- 289. |
| 14 | Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria[J]. Antimicrob Agents Chemother, 2017, 62 (1): e01454- 17. |
| 15 | Ito A, Nishikawa T, Matsumoto S, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2016, 60 (12): 7396- 7401. |
| 16 | Yamano Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria[J]. Clin Infect Dis, 2019, 69 (Suppl7): S544- S551. |
| 17 | Clinical & Laboratory Standards Institute. AST News Update June 2023: The Latest on Testing Cefiderocol [EB/OL]. (2023-6-16) [2024/11/24]. https://clsi.org/about/blog/ast-news-update-june-2023-the-latest-on-testing-cefiderocol. |
| 18 | The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version14.0, 2024 [EB/OL]. (2024-1-1) [2024/11/26]. https://www.eucast.org/clinical_breakpoints. |
| 19 | Food and Drug Administration. Cefiderocol injection [EB/OL]. (2024-11-12) [2024/11/27]. https://www.fda.gov/drugs/development-resources/cefiderocol-injection. |
| 20 | Karlowsky JA, Hackel MA, Takemura M, et al. In vitro susceptibility of gram-negative pathogens to cefiderocol in five consecutive annual multinational SIDERO-WT surveillance studies, 2014 to 2019[J]. Antimicrob Agents Chemother, 2022, 66 (2): e0199021. |
| 21 | Wise MG, Karlowsky JA, Hackel MA, et al. In vitro activity of cefiderocol against meropenem-nonsusceptible gram-negative bacilli with defined β-lactamase carriage: SIDERO-WT surveillance studies, 2014-2019[J]. Microb Drug Resist, 2023, 29 (8): 360- 370. |
| 22 | Liu X, Lei T, Yang Y, et al. Structural basis of PER-1-mediated cefiderocol resistance and synergistic inhibition of PER-1 by cefiderocol in combination with avibactam or durlobactam in acinetobacter baumannii [J]. Antimicrob Agents Chemother, 2022, 20, 66(12): e0082822. |
| 23 | Saisho Y, Katsube T, White S, et al. Pharmacokinetics, safety, and tolerability of cefiderocol, a novel siderophore cephalosporin for gram-negative bacteria, in healthy subjects[J]. Antimicrob Agents Chemother, 2018, 62 (3): e02163- 17. |
| 24 | Miyazaki S, Katsube T, Shen H, et al. Metabolism, excretion, and pharmacokinetics of [14C]-cefiderocol (S-649266), a siderophore cephalosporin, in healthy subjects following intravenous administration[J]. J Clin Pharmacol, 2019, 59 (7): 958- 967. |
| 25 | Katsube T, Echols R, Arjona Ferreira JC, et al. Cefiderocol, a siderophore cephalosporin for gram-negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment[J]. J Clin Pharmacol, 2017, 57 (5): 584- 591. |
| 26 | Katsube T, Wajima T, Ishibashi T, et al. Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function [J]. Antimicrob Agents Chemother, 2016, 27, 61(1): e01381-16. |
| 27 | Katsube T, Saisho Y, Shimada J, et al. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects[J]. J Antimicrob Chemother, 2019, 74 (7): 1971- 1974. |
| 28 | Kawaguchi N, Katsube T, Echols R, et al. Intrapulmonary pharmacokinetic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, in patients with pneumonia and healthy subjects[J]. J Clin Pharmacol, 2022, 62 (5): 670- 680. |
| 29 | Bradley JS, Orchiston E, Portsmouth S, et al. Pharmacokinetics, safety and tolerability of single-dose or multiple-dose cefiderocol in hospitalized pediatric patients three months to less than eighteen years old with infections treated with standard-of-care antibiotics in the PEDI-CEFI phase 2 study[J]. Pediatr Infect Dis J, 2025, 44 (2): 136- 142. |
| 30 | Kidd JM, Abdelraouf K, Nicolau DP. Development of neutropenic murine models of iron overload and depletion to study the efficacy of siderophore-antibiotic conjugates [J]. Antimicrob Agents Chemother, 2019, 20, 64(1): e01961-19. |
| 31 | Matsumoto S, Singley CM, Hoover J, et al. Efficacy of cefiderocol against carbapenem-resistant gram-negative bacilli in immunocompetent-rat respiratory tract infection models recreating human plasma pharmacokinetics [J]. Antimicrob Agents Chemother, 2017, 24, 61(9): e00700-17. |
| 32 | Goutelle S, Ammour N, Ferry T, et al. Optimal dosage regimens of cefiderocol administered by short, prolonged or continuous infusion: a PK/PD simulation study[J]. J Antimicrob Chemother, 2024, 23, dkae464. |
| 33 | Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial[J]. Lancet Infect Dis, 2018, 18 (12): 1319- 1328. |
| 34 | Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial[J]. Lancet Infect Dis, 2021, 21 (2): 213- 225. |
| 35 | Bassetti M, Ariyasu M, Binkowitz B, et al. Designing A pathogen-focused study to address the high unmet medical need represented by carbapenem-resistant gram-negative pathogens-the international, multicenter, randomized, open-Label, phase 3 CREDIBLE-CR study [J]. Infect Drug Resist, 2019, 12: 3607-3623. |
| 36 | Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial[J]. Lancet Infect Dis, 2021, 21 (2): 226- 240. |
| 37 | Paterson DL, Kinoshita M, Baba T, et al. Outcomes with cefiderocol treatment in patients with bacteraemia enrolled into prospective phase 2 and phase 3 randomised clinical studies[J]. Infect Dis Ther, 2022, 11 (2): 853- 870. |
| 38 | Timsit JF, Paul M, Shields RK, et al. Cefiderocol for the treatment of infections due to metallo-B-lactamase-producing pathogens in the CREDIBLE-CR and APEKS-NP phase 3 randomized studies[J]. Clin Infect Dis, 2022, 75 (6): 1081- 1084. |
| 39 | Sanabria C, Migoya E, Mason JW, et al. Effect of cefiderocol, a siderophore cephalosporin, on QT/QTc interval in healthy adult subjects [J]. Clin Ther, 2019, 41(9): 1724-1736. e4. |
| 40 | Katsube T, Miyazaki S, Narukawa Y, et al. Drug-drug interaction of cefiderocol, a siderophore cephalosporin, via human drug transporters[J]. Eur J Clin Pharmacol, 2018, 74 (7): 931- 938. |
| 41 | Wang L, Zhu J, Chen L, et al. Cefiderocol: clinical application and emergence of resistance[J]. Drug Resist Updat, 2024, 72, 101034. |
| 42 | Iovleva A, Fowler VG Jr, Doi Y. Treatment approaches for carbapenem-resistant acinetobacter baumannii infections[J]. Drugs, 2025, 85 (1): 21- 40. |
| 43 | Risco-Risco C, Henriquez-Camacho C, Herrera-Rueda M, et al. Cefiderocol versus best available therapy in the treatment of critically ill patients with severe infections due to resistant gram-negative bacteria: a systematic review and meta-analysis [J]. Antibiotics (Basel), 2024, 5, 13(11): 1048. |
| 44 | Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance [J]. Antibiotics (Basel), 2022, 27, 11(6): 723. |
| 45 | Kohira N, Hackel MA, Oota M, et al. In vitro antibacterial activities of cefiderocol against Gram-negative clinical strains isolated from China in 2020[J]. J Glob Antimicrob Resist, 2023, 32, 181- 186. |
| 46 | Zhao J, Pu D, Li Z, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against carbapenem-resistant hypervirulent Klebsiella pneumoniae in China [J]. Antimicrob Agents Chemother, 2023, 67(12): e0073523. |
| 47 | Liu X, Li Z, Zhang F, et al. In vitro antimicrobial activity of six novel β-lactam and β-lactamase inhibitor combinations and cefiderocol against NDM-producing Enterobacterales in China [J]. Int J Antimicrob Agents, 2024, 65(2): 107407. |
| 48 | Bianco G, Boattini M, Cricca M, et al. Updates on the activity, efficacy and emerging mechanisms of resistance to cefiderocol [J]. Curr Issues Mol Biol, 2024, 46(12): 14132-14153. |
| 49 | Galdino ACM, Vaillancourt M, Celedonio D, et al. Siderophores promote cooperative interspecies and intraspecies cross-protection against antibiotics in vitro[J]. Nat Microbiol, 2024, 9 (3): 631- 646. |
| 50 | Hobson CA, Cointe A, Jacquier H, et al. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect [J]. Clin Microbiol Infect, 2021, 27(8): 1172. e7-1172. e10. |
| 51 | Tamma PD, Heil EL, Justo JA, et al. Infectious diseases society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections [J]. Clin Infect Dis, 2024: ciae403. |
| 52 | Wright H, Harris PNA, Chatfield MD, et al. Investigator-driven randomised controlled trial of cefiderocol versus standard therapy for healthcare-associated and hospital-acquired gram-negative bloodstream infection: Study protocol (the GAME CHANGER trial): study protocol for an open-label, randomised controlled trial[J]. Trials, 2021, 22 (1): 889. |
| 53 | Onorato L, de Luca I, Monari C, et al. Cefiderocol either in monotherapy or combination versus best available therapy in the treatment of carbapenem-resistant acinetobacter baumannii infections: a systematic review and meta-analysis[J]. J Infect, 2024, 88 (3): 106113. |
| 54 | Karakonstantis S, Rousaki M, Vassilopoulou L, et al. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: a systematic review and meta-analysis[J]. Clin Microbiol Infect, 2024, 30 (2): 178- 188. |
| 55 | Lewis RE, Palombo M, Diani E, et al. Synergistic activity of cefiderocol in combination with avibactam, sulbactam or tazobactam against carbapenem-resistant gram-negative bacteria[J]. Cells, 2024, 13 (16): 1315. |
| 56 | Clinicaltrials. gov. A DDI study to investigate PK and safety of cefiderocol in combination with xeruborbactam in healthy adult participants [EB/OL]. (2024-9-19) [2025/1/11]. https://clinicaltrials.gov/study/NCT06547554?cond=cefiderocol&page=2&rank=17. |
| 57 | Chinese Clinical Trial Registry. A multicenter, randomized, double-blind clinical study of cefiderocol for the treatment of complicated urinary tract infections caused by a gram-negative pathogen in Chinese adults in comparison with intravenous imipenem/cilastatin [EB/OL]. (2024-10-8) [2025/2/2]. https://www.chictr.org.cn/showprojEN.html?proj=222918. |
| [1] | Jing XIE, Xiaoni WANG, Jie MIN, Min LIU, Xu ZHU, Wang HU, Chang LU, Ran ZHANG, Huan ZHOU, Jian GONG. Study on bioequivalence evaluation of daclatasvir hydrochloride tablets in healthy Chinese subjects [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 55-62. |
| [2] | Yuan LIU, Cheng CUI, Miao YU, Wenyu JIN, Yinliang BAI, Yabin DUAN, Cao FANG, Jianchang HE, Yan HE, Hua HUANG, Shixia HUO, Yang JIN, Lin JIANG, Zhe JIANG, Zheng JIAO, Xuejun LI, Xiangyang LI, Hongjian LI, Lihong LIU, Yang LIU, Hongqiang QIU, Feng SUN, Jianjun SUN, Xuechang WANG, Jianhua WANG, Zhenlei WANG, Shijie WEI, Xiaowen YAN, Lei ZHANG, Xuenong ZHANG, Yuxin ZHANG, Jun ZHAO, Jiye YIN, Ru YAN, Xinchun WANG, Dongyang LIU. Expert consensus on the value and strategies of precise drug administration for multi-ethnic populations in China [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 1-13. |
| [3] | ZHAN Shuqin, ZHANG Huimin, ZHANG Yimeng . Research advances in wake-promoting drugs for the treatment of narcolepsy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(12): 1615-1624. |
| [4] | LI Longjie, XU Haiping, ZHU Xinyan, HE Qingfeng, WANG Yanhui, TAO Yingmin, XIANG Xiaoqiang, YE Mengfan. Research progress on endogenous biomarkers in drug-drug interaction [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(12): 1692-1700. |
| [5] | CHANG Zhao, ZHOU Yuxue, ZHANG Shengnan, LV Meng . Clinical efficacy and influence factors about intra-patient variation of tacrolimus concentration in children with nephrotic syndrome [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(11): 1524-1529. |
| [6] | CAO Shang, RAO Yuqing, DONG Chenglong, LI Ziwei, KAN Hongwei. Pharmacovigilance of antibody drugs: Bayesian network practice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(11): 1541-1549. |
| [7] | WANG Yan, XIA Yuming, ZHU Rendi, OUYANG Ziwei, CHENG Yuanzhi, ZHOU Renpeng, HU Wei. Bioequivalence of ritonavir tablets in healthy Chinese volunteers [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(9): 1193-1199. |
| [8] | WEI Yuanyuan1, MA Tao1, TANG Yuezhou1, LI Hubo1, 2, TIAN Xiaoyu1, 2, DANG Yunjie1, ZHOU Xu1. Individualized dosage study of vitamin D3 based on physiologically-based pharmacokinetic modeling [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(8): 1067-1075. |
| [9] | HU Jing, ZHANG Di, CHENG Erlin. Effects of TLR-9 (1237 T/C) gene polymorphism on recurrent infection in patients with diabetic foot [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(7): 950-960. |
| [10] | DING Qin, YANG Ruwei, ZHANG Shengnan, YANG Guoping, PEI Qi. Time-to-event analysis in evaluating the efficacy of drugs against multidrug-resistant gram-negative bacterial infections [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(7): 998-1008. |
| [11] | HEN Lu, LI Xiaobin, MA Wenxia, XIE Hongyu, WANG Wenping. Bioequivalence study of rivaroxaban tablets in healthy Chinese subjects [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(6): 789-795. |
| [12] | TIAN Yan, YANG Xinyi, LIN Shuangshuang, HE Jinjie, WANG Jingjing, WEI Qiong, HUANG Xingxing, WU Xiaojie. Study on safety, pharmacokinetics, and pharmacodynamics of YZJ-3058 tablets for single oral administration in healthy Chinese subjects [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(6): 796-803. |
| [13] | CHENG Junlin, QIU Runze, HU Yunfang, LIU Jianghui, FAN Hongwei . Analysis of an investigation on reasons for subjects screening failure and exploration of influencing factors in clinical trial in healthy volunteersin phase I clinical trials [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(6): 804-811. |
| [14] | ZHANG Li, LOU Donghua. SAS macro tool for pharmacokinetic parameter estimation based on non-compartmental models [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(5): 608-621. |
| [15] | ZONG Jie, HU Xuan, DOU Guifang, MENG Zhiyun, ZHU Xiaoxia, GU RuoLan, WU Zhuona, GUAN Jingli, GAN Hui. Establishment and application of physiological-based pharmacokinetic model of ertapenem in elderly patients with chronic kidney disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(5): 622-630. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||